Experimental Models

<table>
<thead>
<tr>
<th>Neuro degenerative diseases</th>
<th>Pathologies</th>
<th>Effects on Cx expression and/or function</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAE (model of Multiple Sclerosis) Mouse spinal cord Guinea-pig</td>
<td>EAE (model of Multiple Sclerosis) Mouse spinal cord Guinea-pig</td>
<td>Cx43 in inflamed white matter<sup>1</sup> Cx43 in demyelinated white matter<sup>2</sup> Cx43 in remyelinating lesions<sup>2</sup></td>
</tr>
<tr>
<td>Alzheimer Post-mortem human biopsies APP/PS1 mice PDAPP mice</td>
<td>Alzheimer Post-mortem human biopsies APP/PS1 mice PDAPP mice</td>
<td>Cx43 IR in reactive astrocytes at amyloid plaques<sup>3</sup> Cx43 and Cx30 IR in reactive astrocytes at amyloid plaque sites<sup>4</sup> Cx43 and Cx30 IR in reactive astrocytes at amyloid plaque sites<sup>4</sup> Cx43 IR in reactive astrocytes at amyloid plaques<sup>3</sup> Cx43 and Cx30 IR in reactive astrocytes at amyloid plaque sites<sup>4</sup></td>
</tr>
<tr>
<td>Parkinson MPTP mice Rotenone rat</td>
<td>Parkinson MPTP mice Rotenone rat</td>
<td>Cx43 in striatum (mRNA and protein), No change GJ coupling<sup>5</sup> Cx43 in basal ganglia<sup>7</sup></td>
</tr>
<tr>
<td>Huntington Post-mortem human biopsies</td>
<td>Huntington Post-mortem human biopsies</td>
<td>Cx43 in caudate nucleus, No change in globus pallidus<sup>6</sup></td>
</tr>
<tr>
<td>Epilepsy Kindling rat or tetanus toxin injection Tetanus toxin injection in the rat amygdala Tuberous sclerosis complex mouse</td>
<td>Epilepsy Kindling rat or tetanus toxin injection Tetanus toxin injection in the rat amygdala Tuberous sclerosis complex mouse</td>
<td>Cx43 mRNA and No change in protein (≥4 weeks)<sup>7</sup> Cx43 mRNA<sup>10</sup> Cx43 IR and GJ coupling, No change Cx30<sup>11</sup></td>
</tr>
<tr>
<td>Paroxysmal tonic spasms</td>
<td>Paroxysmal tonic spasms</td>
<td>No changes in Cx43 protein<sup>12</sup> No changes Cx43 and Cx30 mRNA, WB and IR (30 days)<sup>13</sup> No change in Cx43 mRNA and protein<sup>14</sup></td>
</tr>
<tr>
<td>Epilepsy Kindling model of epilepsy rat Kainate intraperitoneal injection rat Hippocampal slices (buccullin)</td>
<td>Epilepsy Kindling model of epilepsy rat Kainate intraperitoneal injection rat Hippocampal slices (buccullin)</td>
<td>Human temporal lobe cortex biopsies with seizure Cx43 mRNA<sup>15</sup></td>
</tr>
<tr>
<td>Epilepsy Human epileptic cortex periurtumoral 4AP induced epilepsy in vivo rat Organotypic cultures (buccullin) Kainate intraventricular injection hippocampus rat Human hippocampal biopsies MTLE</td>
<td>Epilepsy Human epileptic cortex periurtumoral 4AP induced epilepsy in vivo rat Organotypic cultures (buccullin) Kainate intraventricular injection hippocampus rat Human hippocampal biopsies MTLE</td>
<td>Cx43 IR<sup>7</sup> Cx43 mRNA (1h)<sup>17, 18</sup> Cx43 IR WB<sup>16</sup> Cx43 mRNA (1h)<sup>17, 18</sup> Cx43 IR<sup>16</sup> Cx43 IR<sup>16</sup> Cx43 IR<sup>16</sup></td>
</tr>
<tr>
<td>Trauma and Spinal cord injury</td>
<td>Trauma and Spinal cord injury</td>
<td>Cx43 and GJ coupling<sup>24</sup> Cx43 IR (epitope masking) 3-8 days post-injury<sup>25</sup> Cx43 IR<sup>27</sup> Cx43 mRNA and protein (4hrs to 28 days)<sup>26</sup> Cx43 IR<sup>27</sup></td>
</tr>
<tr>
<td>Trauma and Spinal cord injury Mechanical lesion cortex rat Acute spinal cord compression injury rat</td>
<td>Trauma and Spinal cord injury Mechanical lesion cortex rat Acute spinal cord compression injury rat</td>
<td>Cx43 mRNA and protein (4hrs to 28 days)<sup>26</sup> Cx43 IR<sup>27</sup></td>
</tr>
<tr>
<td>Trauma and Spinal cord injury Spinal cord transection rat Lateral fluid percussion injury rat</td>
<td>Trauma and Spinal cord injury Spinal cord transection rat Lateral fluid percussion injury rat</td>
<td>Cx43 IR<sup>27</sup> Cx43 mRNA (24h-72h) and IR (48h) Cx43 mRNA (6h)≥ (12-72h) in astrocytes<sup>20, 21</sup></td>
</tr>
<tr>
<td>Ischemia Bilateral carotid occlusion mouse Bilateral carotid occlusion rat</td>
<td>Ischemia Bilateral carotid occlusion mouse Bilateral carotid occlusion rat</td>
<td>No change in Cx43 mRNA and protein (WB) 24h<sup>19</sup> No change in Cx43 or phosphorylation (WB)<sup>29</sup> Cx43 IR redistribution (2-7 days) Cx43 IR<sup>16</sup> in neuron depleted area</td>
</tr>
<tr>
<td>Ischemia Focal (MCAO) (1-24hrs) rat OGD adult cortex slices rat OGD hippocampal slices rat</td>
<td>Ischemia Focal (MCAO) (1-24hrs) rat OGD adult cortex slices rat OGD hippocampal slices rat</td>
<td>Cx43 dephosphorylation and IR redistribution<sup>30</sup> Cx43 dephosphorylation and GJ coupling<sup>31</sup> Cx43 dephosphorylation and IR redistribution<sup>32</sup></td>
</tr>
<tr>
<td>Ischemia Transient carotid block 48h rat Human acute brain ischemia Photothrombotic ischemic injury rat</td>
<td>Ischemia Transient carotid block 48h rat Human acute brain ischemia Photothrombotic ischemic injury rat</td>
<td>Cx43 IR CA1/CA2<sup>33</sup> Cx43 penumbra<sup>34</sup> Cx43 mRNA and protein in glotic tissue<sup>35, 36</sup> Cx43 mRNA but Cx43 protein cortex (1-14 days) Cx43 dephosphorylation and IR redistribution<sup>30</sup></td>
</tr>
<tr>
<td>Autism Human post-mortem biopsies</td>
<td>Autism Human post-mortem biopsies</td>
<td>Cx43<sup>37</sup></td>
</tr>
<tr>
<td>Excitotoxic injury Intrathalamic KA injection rat Intracerebral KA injection rat</td>
<td>Excitotoxic injury Intrathalamic KA injection rat Intracerebral KA injection rat</td>
<td>Cx43 IR<sup>38</sup> Cx43 IR redistribution and GJ loss (5h-2 weeks)<sup>30, 40</sup> Cx30 and Cx43 IR in neuron depleted area (1 week)<sup>41</sup> Cx30 and Cx43 IR at periphery (1 week)<sup>41</sup></td>
</tr>
<tr>
<td>Pain Trigeminal model of inflammatory hyperalgesia</td>
<td>Pain Trigeminal model of inflammatory hyperalgesia</td>
<td>Cx43 IR in trigeminal nucleus<sup>42</sup></td>
</tr>
<tr>
<td>Infections Influenza infection pregnant mice Neonatal Borna virus rat brain infection 8 weeks post-infection</td>
<td>Infections Influenza infection pregnant mice Neonatal Borna virus rat brain infection 8 weeks post-infection</td>
<td>Cx43 in neocortex of littermate<sup>39</sup> In the hippocampal formation : Cx43 IR redistribution and GJ loss (5h-2 weeks)<sup>39, 40</sup> In the cerebellum : Cx30 mRNA and protein Cx43 protein in ML and GL<sup>43</sup></td>
</tr>
</tbody>
</table>

^{4AP}: 4-amino-pyridine; EAE: experimental autoimmune encephalomyelitis; GJ: gap junction; IR: immunoreactivity; KA: kainic acid; MCAO: middle cerebral artery occlusion; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MTLE: mesial temporal lobe epilepsy; OGD: oxygen glucose deprivation; WB: Western blot.

Data obtained in primary or in organotypic cultures submitted to diverse treatments that induce ischemic (metabolic inhibition, OGD) or inflammatory
situations have been reviewed recently (see for instance 46, 47) and are not included in this table.

