Model of non-inherited resistance and antibiotic treatment

We assume that within an infected patient, bacteria are of two states with respect to their inherent (genetic) susceptibility to a bactericidal antibiotic, susceptible and resistant. The extent to which the susceptible bacteria are killed by the antibiotic depends on the concentration of the drug, A (µg/ml), and whether they are in an unprotected or protected state, U and P, respectively. U and P in this model can be physically different sites within an infected host; one where they are replicating rapidly and are highly susceptible to the action of the antibiotic, U, and one in which they are replicating slowly and indifferent to antibiotic, P. The P state can also be a slowing or non-dividing, persistent subset of a contiguous population of infecting bacteria. The densities of genetically sensitive and resistant bacteria in the U state are, respectively Su and Ru, and the corresponding densities in the P state are Sp, and Rp (bacteria per ml). Bacteria move (change states) from U to P and from P to U at rate x and y per cell per hour, respectively (Box figure in Levin and Rozen) and below.

![Diagram](image.png)

Figure 1. Two compartment model of antibiotic treatment. The susceptible bacteria in the U (unprotected) compartment, at density Su, are rapidly killed by the antibiotic while those in the P (protected) compartment, Sp, are somewhat refractory to the antibiotic. A is the concentration of the antibiotic, which is the same in both compartments. Ru and Rp are the densities of genetically resistant bacteria in the U and P compartments, respectively. The parameters x and y are the rates of movement (change in state) between compartments.

In the absence of antibiotic, the Su and Sp populations grow at a maximum rates vsu and vsp hr$^{-1}$, respectively, and with or without the antibiotic the Ru and Rp populations grow at maximum rates, vru and vrp hr$^{-1}$. The total densities of bacteria
in these two states are regulated as logistic functions with carrying capacities k_u and k_p, for the unprotected and protected states, respectively. While the rates of replication and mortality of R_u and R_p are independent of the concentration of the antibiotic, those of the S_u and S_p depend on the concentration as a Hill function. So that when the concentration of the antibiotic is A, the rate growth or death of S_u and S_p are respectively

\[
P(s_u) = (v_{s_u} - ((v_{s_u} - f_{s_u})(A/m_{i_u})^k)/((A/m_{i_u})^k - f_{s_u}/v_{s_u}))* (1-N_u/K_u)
\]

\[
P(s_p) = (v_{s_p} - ((v_{s_p} - f_{s_p})(A/m_{i_p})^k)/((A/m_{i_p})^k - f_{s_p}/v_{s_p}))* (1-N_p/K_p)
\]

Where f_{s_u} and f_{s_p} are the minimum growth (maximum death) rates in the U and P compartments, m_{i_u} and m_{i_p} are the minimum inhibitory concentrations of the antibiotic, MIC (μg/ml), in the U and P compartments and k the Hill coefficient. N_u and N_p are the total densities of bacteria in that compartment, $N_u = S_u + R_u$, $N_p=S_p+R_p$. The effective concentration of the antibiotic, A declines at rate d per hour and every dose hours, A_{max} (μg/ml) of the antibiotics is added. To allow for the change in the rate of conversion of P to U in the Box Figure of Levin and Rozen, we assume that after a specified amount of time, y changes in value.

With these definitions and assumptions, at any given time, the rates of change in the densities of bacteria and the concentration of the antibiotic are given by,

\[
dS_u/dt = (P(S_u)*S_u - x*S_u + y*S_p)*(1-N_u/k_u)
\]

\[
dR_u/dt = (v_{r_u}*R_u - x*R_u + y*R_p)*(1-N_u/k_u)
\]

\[
dS_p/dt = (P(S_p)*S_p + x*S_u - y*S_p)*(1-N_p/k_p)
\]

\[
dR_p/dt = (v_{r_p}*R_p + x*R_u - y*R_p)*(1-N_p/k_p)
\]

\[
dA/dt = -d*A
\]

At a rate μ per cell per hour mutations can occur converting dividing susceptible bacteria into resistant. We neglect mutations in the reverse direction, but assume mutations can occur in the U and P states. We use a Monte Carlo protocol to simulate the mutation process. At each finite time interval Δt a pseudo random number x ($0 < x < 1$) from a rectangular distribution is generated. If that number is less than the product of the maximum replication rate, density of susceptible cells in that compartment, volume of the habitat, v_{oU} and v_{oR} and t a mutation is generated and
the resistant bacteria in that compartment is augmented by 1/volU or 1/volP and the corresponding densities of susceptible bacteria reduced by that amount.

This model was programmed and run with Berkeley MadonnaTM, a differential equations-computer simulation package that can be downloaded from www.berkeleymadonna.com. You can run this program by patching the below code into the Berkeley Madonna file.

```
{Model of antibiotic decay, PD/PK with Two habitats}
{Protected habitat decays when TX > decay}
{In one habitat U, the bacteria replicate at a high rate and are done in by the antibiotic at a high rate}
{In the second habitat, P, the bacteria replicate at a low rate and are done in by the antibiotic at a low rate}
{We assume a Hill function PD and exponential decay of the antibiotic with periodic input for the PK}

METHOD EULER
STARTTIME = 0
STOPTIME=336
DT = 0.0001
DTOUT =0.50
init Su=1e6  {Initial density of sensitive bacteria U}
init Sp =1e5  {Initial density of sensitive bacteria P}
init Ru=0  {Initial density resistant bacteria U}
init Rp=0 {Initial density resistant bacteria P}
init Au=10 {initial concentration of the antibiotic U}
init Ap=10 {initial concentration of the antibiotic P}

{Note in runs made in Levin and Rozen, Au=Ap=A}
init TX=0 {Time indicator}

{Parameters}
vsu = 1.0 {Max growth rate sensitive U}
vsp = 0.01 {Max growth rate sensitive P}
vru = 0.9 {Max growth rate resistant U}
vrp = 0.009 {Max rowth rate resistant P}
fsu= -10 {Minimum growth rate sensitive U}
fsp=-0.01 {minimum growth rate sensitive P}
micu = 1. {MIC in U}
micp =1 {MIC in P}
{We are assuming the resistant bacteria are unaffected by the antibiotic}
ku =1e10 {Saturation of U}
kp=1e6 {Saturation of P}
k=1 {Hill Coefficient}
x = 1e-3 {Rate of migration U to P}
y = 1e-3 {Rate of migration P to U}
ycz =1e-3 {Rate of migration P to U when T>decay}
amaxu = 10 {Amount of the antibiotic added to U}
amaxp = 10 {Amount of the antibiotic added to P}
decay =120 {Decay in protected population starts at this time}
dpro = 0
du =.5 {Antibiotic decay rate U}
dp= .5 {Antibiotic decay rate P}
```
\[
\begin{align*}
\frac{d}{dt} (Au) &= -du\cdot Au + ADDu \quad \text{(change in the concentration of the antibiotic in U)} \\
\frac{d}{dt} (Ap) &= -dp\cdot Ap + ADDp \quad \text{(change in the concentration of the antibiotic in U)} \\
pu &= \frac{((vsu-fsu)\cdot(Au/micu)^k)}{((Au/micu)^k - fsu/vsu)} \\
pp &= \frac{((vsp-fsp)\cdot(Ap/micp)^k)}{((Ap/micp)^k - fsp/vsp)} \\

Nu &= Su + Ru \\
Np &= Sp + Rp \\
\frac{d}{dt} (Su) &= ((vsu - pu)\cdot Su - x\cdot Su + ykk\cdot Sp)\cdot(1 - Nu/ku) - GU/volU \\
\frac{d}{dt} (Ru) &= (vru\cdot Ru - x\cdot Ru + ykk\cdot Rp)\cdot(1 - Nu/ku) + GU/volU \\
\frac{d}{dt} (Sp) &= ((vsp - pp)\cdot Sp + x\cdot Su - ykk\cdot Sp)\cdot(1 - Np/kp) - GP/volP - Sp\cdot DK \\
\frac{d}{dt} (Rp) &= (vsp\cdot Rp + x\cdot Ru - ykk\cdot Rp)\cdot(1 - Np/kp) + GP/volP - Rp\cdot DK \\
\frac{d}{dt} (TX) &= 1 \\
\text{dose} &= 10 \quad \text{(Dosing interval Lambda)} \\
\text{init TT} &= 0 \\
\frac{d}{dt} (TT) &= 1 - GT^2 \\
ADDu &= \text{IF TT > dose THEN PULSE}(amaxu\cdot2, \text{TIME}, 21) \text{ ELSE 0} \\
ADDp &= \text{IF TT > dose THEN PULSE}(amaxu\cdot2, \text{TIME}, 21) \text{ ELSE 0} \\
GT &= \text{IF TT > dose THEN PULSE}(dose, \text{TIME}, 21) \text{ ELSE 0} \\

\{\text{Mutation routine}\} \\
volU &= 10 \quad \text{(Volume of U)} \\
volP &= 10 \quad \text{(Volume of P)} \\
u &= 0 \quad \text{(Mutation rate to resistance)} \\
bsu &= Su\cdot vsu\cdot DT\cdot u\cdot volU \\
rm &= \text{RANDOM} \ (0, \ 1) \\
GU &= \text{IF rm < bsu THEN PULSE \ (1,TIME,21) ELSE 0} \\
bsp &= Sp\cdot vsp\cdot DT\cdot u\cdot volP \\
rr &= \text{RANDOM} \ (0, \ 1) \\
GP &= \text{IF rr < bsp THEN PULSE \ (1,TIME,21) ELSE 0} \\

\{\text{Decay of protected habitat}\} \\
DK &= \text{IF TX < decay THEN PULSE \ (0,TIME,21) ELSE dpro} \\
ykk &= \text{IF TX < decay THEN PULSE \ (y,TIME,21) ELSE yzz}
\end{align*}
\]