<table>
<thead>
<tr>
<th>Pathway</th>
<th>Gene</th>
<th>Disease Association Studied</th>
<th>GWAS or selective population study</th>
<th>References for SNPs Supporting Association</th>
<th>References for SNPs Not Supporting Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFR1/2-TNF/LTα*</td>
<td>TNFR1</td>
<td>MS</td>
<td>GWAS</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TNFR1</td>
<td>RA</td>
<td>GWAS</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TNFR1</td>
<td>Psoriasis</td>
<td>GWAS</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TNFR1</td>
<td>Ulcerative colitis</td>
<td>GWAS</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TNFR1 or TNF</td>
<td>Primary biliary cirrhosis</td>
<td>GWAS</td>
<td>6, 7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>TNFR1 or TNF</td>
<td>Ankylosing spondylitis</td>
<td>GWAS</td>
<td>9-11</td>
<td>12, 13</td>
</tr>
<tr>
<td>TNF</td>
<td>Malaria</td>
<td>African cohort</td>
<td>14-16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>TNF</td>
<td>Alzheimer's disease</td>
<td>GWAS or US cohort</td>
<td>17, 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFR1 or LTα</td>
<td>Cardiovascular disease (myocardial infarction, atherosclerosis, coronary artery disease)</td>
<td>GWAS or European or US or Japanese cohorts</td>
<td>19-23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTα or TNF</td>
<td>Asthma</td>
<td>GWAS or Japanese or US cohorts</td>
<td></td>
<td>24, 25</td>
<td>26</td>
</tr>
<tr>
<td>LTα</td>
<td>Leprosy</td>
<td>Asian or Indian cohorts</td>
<td></td>
<td>27, 28</td>
<td></td>
</tr>
<tr>
<td>TNFR2 and TNF</td>
<td>SLE</td>
<td>Various cohorts</td>
<td></td>
<td>29-31</td>
<td></td>
</tr>
<tr>
<td>OX40-OX40L or OX40L</td>
<td>OX40L</td>
<td>Cardiovascular disease (myocardial infarction, coronary artery disease, venous thromboembolism, essential hypertension)</td>
<td>European, Chinese, US or Japanese cohorts</td>
<td>32-36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OX40L</td>
<td>SLE</td>
<td>UK, US, Chinese, or European cohorts, GWAS</td>
<td></td>
<td>37-42</td>
</tr>
<tr>
<td></td>
<td>OX40L</td>
<td>SSc</td>
<td>US or European cohorts</td>
<td></td>
<td>44, 45</td>
</tr>
<tr>
<td>CD30-CD30L or CD30L</td>
<td>CD30 or CD30L</td>
<td>Lymphoma (lymphomatoid papulosis, lung cancer)</td>
<td>US cohorts, GWAS</td>
<td></td>
<td>46, 47</td>
</tr>
<tr>
<td></td>
<td>CD30L</td>
<td>Spondyloarthritis</td>
<td>European cohort</td>
<td></td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>CD30 or CD30L</td>
<td>Type I diabetes</td>
<td>Japanese cohort</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>CD30</td>
<td>SLE</td>
<td>European cohort</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>GITR-GITRL</td>
<td>GITR</td>
<td>Hashimoto's disease</td>
<td>Japanese cohort</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>DR3-TL1A</td>
<td>TL1A</td>
<td>Crohn's disease or Ulcerative colitis or Irritable bowel syndrome</td>
<td>GWAS, Japanese, US, European, Korean or Taiwanese cohorts</td>
<td>52-64</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>TL1A</td>
<td>Leprosy</td>
<td>GWAS</td>
<td></td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>TL1A</td>
<td>Spondyloarthritis</td>
<td>GWAS</td>
<td></td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>BAFFR/TACI or BCMA-BAFF/APRIL</td>
<td>TACI or BAFF or BAFFR</td>
<td>Common variable immunodeficiency</td>
<td>US or European or Middle Eastern cohorts</td>
<td>68-73</td>
</tr>
<tr>
<td>APRIL or BAFF or BCMA</td>
<td>SLE and RA</td>
<td>Japanese or European cohorts</td>
<td>78-80, 81-83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APRIL</td>
<td>IgA nephropathy</td>
<td>GWAS</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAFF</td>
<td>Sjogren’s syndrome</td>
<td>Australian or European cohorts</td>
<td>85, 86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAFF</td>
<td>Cancer (Non-Hodgkin’s lymphoma)</td>
<td>US cohort</td>
<td>87, 88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAFF</td>
<td>Idiopathic thrombocytopenic purpura (ITP)</td>
<td>European or Middle Eastern cohorts</td>
<td>89, 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD27-CD70</td>
<td>CD70 or CD27 Cancer (Non-Hodgkin’s lymphoma, Breast)</td>
<td>US or Chinese cohorts</td>
<td>88, 91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40-CD40L</td>
<td>CD40L X-linked hyper-IgM syndrome</td>
<td>US or Japanese cohorts</td>
<td>92-96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40L or CD40L</td>
<td>MS</td>
<td>GWAS or European cohort</td>
<td>97, 99, 100, 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40L</td>
<td>SLE</td>
<td>European cohort</td>
<td>102, 103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40L or CD40</td>
<td>Cardiovascular disease (Coronary artery disease, atherosclerosis, Kawasaki disease)</td>
<td>GWAS or Japanese or US or Taiwanese cohorts</td>
<td>104-109, 106, 110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40</td>
<td>Graves’ disease</td>
<td>US or European or Korean or Japanese or African or Taiwanese cohorts</td>
<td>111-116, 117-121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40</td>
<td>Type I diabetes</td>
<td>GWAS</td>
<td>122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40</td>
<td>Asthma</td>
<td>Korean or Taiwanese cohort</td>
<td>123, 124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40</td>
<td>RA</td>
<td>GWAS or European cohort</td>
<td>125-126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40</td>
<td>Cancer (Lymphoma, Breast cancer)</td>
<td>US or European or Chinese cohorts</td>
<td>129-131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40</td>
<td>Crohn’s disease</td>
<td>European cohort</td>
<td>132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40</td>
<td>Psoriasis</td>
<td>European cohort</td>
<td>133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANK/OPG-RANKL</td>
<td>RANK or OPG or RANKL Bone disease (bone mineral density (BMD), Pagets disease, Age of menopause, Autosomal recessive osteoporosis, periodontitis, hip failure, Ankylosing spondylitis, adolescent idiopathic scoliosis)</td>
<td>GWAS, Chinese, Korean, European, Chinese, Japanese cohorts</td>
<td>134-150, 141, 146, 150-152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANK or RANKL or OPG</td>
<td>RA</td>
<td>Japanese or US or Mexican cohorts</td>
<td>150-156, 152, 154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RANKL or OPG</td>
<td>Cardiovascular disease (Aortic Calcification, coronary artery disease, vascular mortality)</td>
<td>Korean or Australian cohorts</td>
<td>157, 158, 159, 160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVEM/LTβ-LIGHT</td>
<td>LIGHT or HVEM IBD, Celiac disease, ulcerative colitis</td>
<td>GWAS, US and European cohorts</td>
<td>64, 161-163</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIGHT</td>
<td>MS</td>
<td>GWAS</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Differences have been reported either in the SNPs that were associated or not associated with disease susceptibility, or between certain patient populations, or preferential associations with males versus females, as well as the SNPs being upstream of the gene or in coding or non-coding regions. Additional variations occur in some cases between mild disease and severe disease. For details, please consult individual references. No significant association with disease reported to date for 4-1BB-4-1BBL or TWEAKR-TWEAK. *numerous references and only a small sample listed.
References


SUPPLEMENTARY INFORMATION


46. Franchina, M., Kadin, M.E. & Abraham, L.J. Polymorphism of the CD30 promoter microsatellite repressive element is associated with development of


137. Xiong, D.H. et al. Robust and comprehensive analysis of 20 osteoporosis candidate genes by very high-density single-nucleotide polymorphism screen among 405 white nuclear families identified significant association and gene-


192. Zhang, Z., Qiu, L., Wang, M., Tong, N. & Li, J. The FAS ligand promoter polymorphism, rs763110 (-844C>T), contributes to cancer susceptibility:


