Supplementary Information S1 | Examples of improvements in humanised mouse models for PDX studies

<table>
<thead>
<tr>
<th>Pending issues</th>
<th>Details</th>
<th>Circumvention or solutions</th>
<th>Models (Supplier or Developer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graft versus Host Disease (GvHD)</td>
<td>Engraftment with mature human T cells leads to xenogeneic GvHD due to mismatch between murine MHC and human HLA in engrafted cells or tissues.</td>
<td>• Use of genetically modified mouse strains that develop reduced or no GvHD
 • GvHD reported to depend on HLA haplotype of HSC donor<sup>1</sup></td>
<td>• Immune-deficient strains lacking B2m (NSG-B2m), MHC-I (NSG-(K<sup>D</sup>)-null) or MHC-II (NSG-(H2-Ab)-null (Jackson Laboratory<sup>2,3</sup>))
 • B6RG-Cd47: C57BL/6 mice lacking Rag2 and Il2rg, and deficient for CD47<sup>4</sup>. Absence of GvHD due to improper “education” and functionality of mouse myeloid cells. However, functionality of human myeloid cells still to be validated.</td>
</tr>
<tr>
<td>HLA restriction of T cells and compatibility with tumours</td>
<td>Absence of human HLA molecules on thymic epithelial cells generates human T cells unable to recognize de novo antigens (eg. Tumor specific antigens) in a HLA-restricted manner in HSC transplanted mice<sup>5</sup>.</td>
<td>• Transplantation of human thymus tissue (BLT/ Bone Liver Thymus mice)<sup>6</sup>
 • Use of human HLA class I and/or class II transgenic immune deficient mice<sup>7,11</sup></td>
<td>• E.g. NOG-Dr4 mice (Taconic); NSG-Dr1, NSG-Dr4 or NSG-HLA-A2 mice (Jackson Laboratory).</td>
</tr>
<tr>
<td>Species-specific cytokines and factors</td>
<td>Some human cytokines or factors are species specific, preventing generation or maintenance of specific human immune cell types.</td>
<td>• New mouse strains expressing human cytokines or receptors to obtain a more complete human immune system<sup>12</sup>
 • Onset of anaemia described as a limitation for many of the current models with improved myeloid reconstitution. Efforts being made to avoid anaemia for example by introducing human CD47.</td>
<td>Immune deficient mouse strains transgenic for human cytokines to promote myeloid and NK lineage commitment include:
 • NOG-GM3: NOG mice expressing human GM-CSF and IL-3 (CIEA, Japan)<sup>13</sup>;
 • NSG- SGM3: NSG mice expressing human IL-3, GM-CSF and SCF (Jackson Laboratory<sup>14</sup>);
 • MiSTRG: BALB/c x 129S4 Rag2;Ii2rg double ko mice expressing human M-CSF, GM-CSF, IL-3, THPO and a human SIRPA allele<sup>15</sup>;
 • NOG-hIL6: NOG mice expressing human IL6 (Taconic), featuring increased human monocytes and macrophages (in particular M2 type)
 • NSG-W41: NSG mice with mutated mouse Kit. Reduced mouse haematopoiesis results in higher human reconstitution levels without the need to...</td>
</tr>
</tbody>
</table>
SUPPLEMENTARY INFORMATION

Remaining mouse innate immunity

Despite multiple gene modifications to eliminate mouse immune cells, commonly used NSG and NOD mice still have mouse myeloid cells (macrophages, dendritic cells and granulocytes) which can play a role in tumour biology. Models with reduced mouse innate immune cells. These include strains transgenic for human myeloid specific cytokines mentioned earlier. Immune-deficient mice further modified to functionally incapacitate remaining innate cells.

Impaired humoral immune responses, low Ig levels and impaired Ig class switching

B cells in humanised NSG or NOG mice do not undergo sufficient maturation to become memory and antibody-producing cells. Development of new mouse strains: e.g. human HLA class II transgenic mice, with improved humoral responses due to increased CD4-mediated help; Mice strains transgenic for human cytokines; Improved lymphoid organ development resulting in increased B cell development and Ig class switching (see below).

Impaired lymph node development, poorly developed germinal centres

Defects in cytokine signalling in immune-deficient strains results in poorly developed secondary lymphoid tissues (NSG, NOG and BRG are all Il2rg-deficient). This includes poor germinal centre formation, ineffective class switching of B cells and antigen presentation to naive T cells, impeding robust adaptive immune responses upon humanisation.

Impaired Immunodeficient strains based on NOD

Use immune-deficient mice

NSG precondition mice. Display improved human myeloid reconstitution as compared to NSG mice.

- **NOGh-IL2**: NOG mice expressing human IL2, featuring higher numbers of human NK cells (Taconic).
- **NSG-Tlr4−/−**: facilitates monitoring of human TLR4 responses only (mentioned in).
- **BRGF**: Rag2-deficient, Il2rg-deficient BALB/c (BRG) mice lacking mouse Flt3, resulting in loss of mouse dendritic cells, increased numbers of human dendritic cells, NK and T cells.
- **B6Rg-Cd47** mice (as above)

Impaired humoral immune responses, low Ig levels and impaired Ig class switching

- B cells in humanised NSG or NOG mice do not undergo sufficient maturation to become memory and antibody-producing cells.

Impaired lymph node development, poorly developed germinal centres

- Defects in cytokine signalling in immune-deficient strains results in poorly developed secondary lymphoid tissues (NSG, NOG and BRG are all Il2rg-deficient). This includes poor germinal centre formation, ineffective class switching of B cells and antigen presentation to naive T cells, impeding robust adaptive immune responses upon humanisation.

Impaired Immunodeficient strains based on NOD

- Use immune-deficient mice

NSG-C5a: NSG-C5a mice have the intact Hc gene,
complement system

| background lack hemolytic complement due to a mutation in the C5 complement gene, preventing the formation of the C5b-9 membrane attack complex. These mice lack complement dependent cytotoxicity in e.g. antibody dependent therapies. | strains that do not have the NOD background such as SRG mice. • Genetically modified NOD based mice that have a functional C5 gene. | restoring the complement system. |

B2m, beta2-microglobulin; DR, Antigen D-related; *Flt3*, Fms-like tyrosine kinase 3; GM-CSF, granulocyte-macrophage colony stimulating factor; GvHD, Graft versus Host Disease; Hc, hemolytic complement; HSC, haematopoietic stem cell; Ig, immunoglobulin; *Il2rg*, interleukin 2 receptor common gamma chain; IL2, interleukin 2; IL3, interleukin 3; IL6, interleukin 6; ko, knockout; M-CSF, macrophage colony-stimulating factor; NK, natural killer; *Rag2*, recombination activating gene 2; SCF, stem cell factor; *SIRPA*, signal-regulatory protein α; TLR4, toll-like receptor 4; THPO, thrombopoietin.

References:

