The multiple anti-cancer actions exerted by calcitriol, analogs or dietary vitamin D in rodent models of various cancers have been extensively reviewed \(^1\text{-}^5\). The following is a summary of the salient findings described in the animal studies.

Inhibition of Cancer Initiation and Progression/Chemoprevention

Diet-induced hyperplasia

Western style diets high in fat and low in vitamin D and calcium caused hyper-proliferation of anterior and dorsal prostate epithelial cells. \([6]\)

Western style diets high in fat and low in vitamin D and calcium caused hyper-proliferation and hyperplasia in mouse mammary glands and prostate epithelial cells and this was suppressed by calcium and vitamin D supplementation. \([7,8]\)

Western style diets low in vitamin D and calcium and high in fat induced colonic tumors in mice while feeding diets supplemented with calcium and vitamin D reduced tumor incidence and multiplicity. \([9,10]\)

Chemical carcinogen-induced preneoplasia and cancer

Dietary vitamin D supplementation decreased AZO-induced preneoplastic lesions in mouse colon in a dose-dependent manner. Dietary vitamin D concentrations correlated inversely with dysplasia score and maximum impact was seen when mice consumed more than 2500 IU/kg diet. \([11]\)

Vitamin D administered prior to a carcinogenic insult (DMH) significantly reduced the incidence of colon adenocarcinomas in rats. \([12]\)

Vitamin D did not significantly alter incidence of colon carcinogenesis in rats when given after exposure to DMH. \([13]\)

The vitamin D analog (24, 25-dihydroxyvitamin D\(_3\)) diminished formation of aberrant crypt foci when administered before, after or along with DMH in rats. \([14,15]\)

1\(\alpha\)(OH)D\(_3\) decreased NMU-induced mammary tumor incidence and multiplicity in rats and AOM-induced aberrant crypt foci in mouse colon. However, in the DMBA-induced cancer model tumor progression was inhibited with no change in the incidence of mammary tumors. \([16]\)

VDR ablation increased the susceptibility to DBMA-induced carcinogenesis in a tissue specific manner. Increased incidence of mammary gland hyperplasia with a higher percentage of hormone-independent tumors were observed in Vdr null mice. \([17]\)

Gemini vitamin D analogs 0097 and 0072 inhibited NMU-induced mammary tumor burden in mice without causing hypercalcemia. \([18]\)

Genetically engineered cancer models

In Nkx3.1:Pten mice, a model that recapitulates the various stages of prostate cancer, calcitriol significantly reduced progression of prostatic intraepithelial neoplasia (PIN) to high grade-PIN when administered before the initial occurrence of these lesions. \([19]\)

A vitamin D-deficient diet increased the proliferation and severity of PIN lesions in the anterior prostate of TgAPT\(_{121}\) mice. \([20]\)

Rxr-\(\alpha\) null mice fed the new Western style diets high in fat and low in vitamin D and calcium developed high grade PIN. \([21]\)
In LH overexpressing mice EB1089 decreased the proliferation of mammary epithelial cells in preneoplastic glands and reduced growth rate of hormone-induced tumors.

MMTV-neu mice displaying haploinsufficiency of Vdr had shorter latency and increased incidence of mammary tumor formation.

LPB-Tag model of prostate tumors progressed faster in Vdr null when compared to their wild-type littermates.

Western diets low in calcium and vitamin D increased the number of polyps in the colons of APC\(^{1638N}\) mice.

Administration of a vitamin D\(_2\) analog decreased tumor burden in APC\(^{Min^{+}}\) mouse.

25(OH)D\(_3\) and two vitamin D analogs (NC and HP) failed to reduce tumor multiplicity or alter growth rates of colonic tumors in APC\(^{Pirc^{+}}\) rats or APC\(^{Min^{+}}\) mice.

Tumor inhibitory effects in xenograft models of cancer

Single agents

Gemini vitamin D analogs 0097 and BXL0124 inhibited growth of ER(-) MCF10DCIS cells implanted orthotopically into nude mice without causing hypercalcemia.

Vitamin D\(_2\) analog decreased the growth of HT-29 human colon cancer xenografts growth in mice but not SW-620 xenografts.

EB1089 decreased growth of LNCaP human prostate cancer xenografts in nude mice.

EB1089 dramatically reduced the growth of SUM-159PT human breast cancer xenografts and increased apoptosis.

Vitamin D deficiency accelerated and Gemini analogs of vitamin D and a vitamin D-sufficient diet effectively reduced the growth of MC26 mouse colon xenografts.

Diets low in vitamin D but with normal calcium levels increased the growth of DU145 prostate xenografts when compared to diets containing normal or high calcium with adequate vitamin D.

Calcitriol and dietary vitamin D exhibited equivalent anti-cancer activity to inhibit the growth of MCF-7 human breast xenografts and PC3 human prostate xenografts in nude mice.

Combination Therapy

Tumor volumes were significantly lower in animals irradiated after treatment with EB1089 than those that got radiation alone suggesting that vitamin D metabolites sensitized the tumor to radiation.

Vitamin D analogs PRI 2202 and 2205 demonstrated significant inhibition of 4T1 mouse breast cancer xenografts when combined with cytostatics but not when administered individually.

Calcitriol inhibited the growth of MCF-7 xenografts in a dose-dependent manner and combination with aromatase inhibitors further enhanced this effect, especially the regulation of the gene pathways contributing to the anti-cancer activity.

Combination of dietary soy with calcitriol enhanced both anti-cancer activity as well as hypercalcemic toxicity in mice with PC3 xenografts.
Inhibition of Metastasis

EB1089 decreased total number of bone metastasis, mean surface area of osteolytic lesions and tumor burden in nude mice after intra-cardiac injections of MDA-MB-231 human breast cancer cells.

Low vitamin D levels accelerated 4T1 mouse mammary tumor growth but did not affect metastasis to the Lungs.

EB1089 exerted a strong inhibitory effect on PTHrP-enhanced C4-2 prostate cancer xenograft growth and metastasis to the bone.

Vitamin D deficiency enhanced the growth of MDA-MB-231 breast cancer cells injected into the tibia of mice resulting in osteolytic lesions that appeared earlier and were larger than those seen in the vitamin D-sufficient mice.

Vitamin D deficiency increased bone turnover, osteolytic lesions, total tumor area and total mitotic activity in nude mice receiving intra-tibial injections of PC3 prostate cancer cells.

Abbreviations: AOM - azoxymethane; APC – adenomatous polyposis coli; AZO - azoxymethane; DCIS – ductal carcinoma in situ; DMBA – dimethylbenzanthracene; DMH – N,N'-dimethylhydrazine; LH – luteinising hormone; LPB-Tag - large probasin promoter directed SV40-large T-antigen; MMTV-ErB2 – mouse mammary tumor virus – HER2/neu; NMU - N-methyl-N-nitrosourea; PIN – prostate intraepithelial neoplasia; PTHrP – parathyroid hormone related protein; RXR – retinoid x receptor; VDR – vitamin D receptor;

References

