Supplementary Information for

Ultra-large scale syntheses of monodisperse nanocrystals via a simple and inexpensive route

JONGNAM PARK¹, KWANGJIN AN¹, YOSUN HWANG², JE-GEUN PARK², HAN-JIN NOH³, JAE–YOUNG KIM³, JAE-HOON PARK³, NONG-MOON HWANG⁴, AND TAEGHWAN HYEON*¹

Figure S1. FT-IR spectra of the iron-oleate complex. Red curve: the iron-oleate complex. Black curve: the complex after heating at 380 °C.
Figure S2 Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) data of iron-oleate complex.

![Thermogravimetric and differential scanning calorimetry data](image)

Figure S3 TEM images (upper images: low magnification, bottom images: higher magnification) of the iron oxide nanoparticles taken at various reaction time intervals.
Figure S4 Particle size distribution histograms of iron oxide nanocrystals. (a) 5 nm, (b) 9 nm, (c) 12 nm, (d) 16 nm and (e) 22 nm.

Average diameter = 5.09 nm
Size variation = ± 0.21 nm (± 4.11%)

Average diameter = 9.01 nm
Size variation = ± 0.19 nm (± 2.10%)
Average diameter = 11.72 nm
Size variation = ±0.27 nm (± 2.30%)

Average diameter = 16.25 nm
Size variation = ±0.44 nm (± 2.73%)
Average diameter = 22.06 nm
Size variation = ±0.79 nm (± 3.57%)
Figure S5 The size control of monodisperse iron oxide nanocrystals by varying the relative concentration of oleic acid. (a) 9 nm (1.5 mmol); (b) 12 nm (3 mmol); (c) 14 nm (4.5 mmol).
Figure S6 The powder X-ray diffraction (XRD) patterns of (a) 12 nm sized Fe$_3$O$_4$ nanocrystals, (b) 12 nm sized MnO nanocrystals, (c) pencil-shaped CoO nanorods, and (d) 20 nm sized Fe nanocrystals.
Figure S7 (a) Field dependence of magnetization measured at 5 K after zero-field cooling from 380 K. The inset shows the full hysteresis curve of 16 nm sample measured at 5 K up to 5 Tesla. **(b)** Size dependence of coercive field, H_c, measured at 5 K after zero-field cooling from 380 K. **(c)** The normalized coercive field (H_c/H_{c0}) as function of reduced temperature (T/T_B) for 12 nm sample, where H_c is the coercive field measured at temperature T, H_{c0} the estimated coercive field at $T=0K$, and T_B the measured blocking temperature from $M(T)$. The solid line is guide for eyes and the dashed line is for a theoretical curve for a single domain of fine particles, $(H_c/H_{c0}) = 1-(T/T_B)^{1/2}$.
Figure S8 TEM images of (a) 9 nm sized manganese ferrite and (b) 8 nm sized cobalt ferrite nanocrystals.
(c) Energy dispersive X-ray spectroscopic (EDX) results on the nanoparticles of manganese ferrite and cobalt ferrite.

We have conducted energy dispersive X-ray spectroscopic (EDX) studies on the nanoparticles of cobalt ferrite and manganese ferrite. The molar ratio of Co:Fe was 1:1.93, demonstrating that a stoichiometric cobalt ferrite nanoparticles were produced. The molar ratio of Mn:Fe was 1:2.80, showing that iron-rich manganese ferrite was produced.

<table>
<thead>
<tr>
<th>Element</th>
<th>Peak Area</th>
<th>Area Sigma</th>
<th>k factor</th>
<th>Abs Corrn.</th>
<th>Weight %</th>
<th>Weight%</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn K</td>
<td>101</td>
<td>32</td>
<td>1.120</td>
<td>1.000</td>
<td>25.96</td>
<td>6.46</td>
<td>26.28</td>
</tr>
<tr>
<td>Fe K</td>
<td>285</td>
<td>33</td>
<td>1.133</td>
<td>1.000</td>
<td>74.04</td>
<td>6.46</td>
<td>73.72</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Peak Area</th>
<th>Area Sigma</th>
<th>k factor</th>
<th>Abs Corrn.</th>
<th>Weight %</th>
<th>Weight%</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe K</td>
<td>290</td>
<td>32</td>
<td>1.133</td>
<td>1.000</td>
<td>64.69</td>
<td>5.67</td>
<td>65.91</td>
</tr>
<tr>
<td>Co K</td>
<td>150</td>
<td>33</td>
<td>1.197</td>
<td>1.000</td>
<td>35.31</td>
<td>5.67</td>
<td>34.09</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S9 TEM images and electron diffraction patterns of the products after reacting iron-oleate complex in octadecene (a) at 260 °C for 1 day, (b) at 260 °C for 3 days, (c) at 240 °C for 3 days, and (d) at 200 °C for 3 days.
Figure S10. (a) In-situ FT-IR spectra of the iron-oleate complex at various temperatures. (b) Plot of the temperature dependence of the peak intensity of C-H stretching mode (2930 cm\(^{-1}\)) in the IR spectra. (c) In-situ FT-IR spectra of the solution-phase reaction mixture at various temperatures (background spectra from octadecene solvent was subtracted).