Upon RNA virus recognition RIG-I activates Card9 and inflammasome signaling to facilitate interleukin 1β production

Hendrik Poeck¹,²,³*, Michael Bscheider³*, Olaf Gross¹*, Katrin Finger¹, Susanne Roth¹,⁴, Manuele Rebsamen⁵, Nicole Hannesschläger¹, Martin Schlee², Simon Rothenfusser³, Winfried Barchet², Hiroki Kato⁶, Shizuo Akira⁶, Satoshi Inoue⁷,⁸, Stefan Endres³, Christian Peschel¹, Gunther Hartmann²*, Veit Hornung²* and Jürgen Ruland¹,⁴*

¹III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
²Institute of Clinical Chemistry and Pharmacology, Universitätsklinikum Bonn, 53127 Bonn, Germany.
³Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine, University of Munich, 80336 Munich, Germany.
⁴Laboratory of Signaling in the Immune System, Helmholtz-Zentrum München–Germany, Research Center for Environmental Health, 85764 Neuherberg, Germany
⁵Department of Biochemistry, University of Lausanne, Center of Immunology Lausanne, Epalinges 1066, Switzerland.
⁶Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Japan.
⁷Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8655, Japan
⁸Research Center for Genomic Medicine, Saitama Medical School, Saitama 350-124-2, Japan

*+ These authors contributed equally to this work

Current address: Department of Biochemistry, University of Lausanne, Center of Immunology Lausanne, Epalinges 1066, Switzerland

Correspondence should be addressed to J.R. (jruland@lrz.tum.de)
Supplementary Figures 1 - 4

Supplementary Table 1
Supplementary Figure 1. Distinct 3pRNAs induce comparable caspase-1 activation

BMDCs of WT mice were stimulated with two different 3pRNAs for 6h. Supernatants were analyzed for processing of caspase-1 by immunoblot (a) and for IL-1β production by ELISA (b). All data presented in (b) are means +/- s.e.m. All results shown are representative of at least two independent experiments.
Supplementary Figure 2. Trim25 is required for full IL-1β production upon RNA virus infection

(a) Left Panel: BMDCs of WT and Trim25-deficient (Trim25-KO) mice were stimulated as indicated and cell culture supernatants were analysed for IL-1β production by ELISA. Right panel: BMDCs of WT and Trim25-deficient mice were stimulated as in (a) and intracellular pro-IL-1β concentrations were determined by ELISA after cell lysis with repeated freeze-thaw cycles. (b) Cell culture supernatants of WT and Trim25-deficient cells stimulated as indicated were analyzed for processing of caspase-1 by immunoblot. All data presented in (a) are means +/- s.e.m. All results shown are representative of at least two independent experiments.
Supplementary Figure 3. Card9 deletion or IKK inhibition abrogates RIG-I-induced pro-IL-1β mRNA induction and IL-1β secretion

(a, b) BMDCs from WT or Card9-deficient (Card9-KO) mice were pretreated with 3μM IKK inhibitor Bay11-7082 or only DMSO for 1 h as indicated and subsequently stimulated for 6 h with VSV where indicated.

(a) Relative amounts of pro-IL-1β mRNA were determined by quantitative RT-PCR analysis.

(b) Supernatants were analyzed for IL-1β concentrations by ELISA.

All data are means +/- s.e.m.. All results shown are representative of at least two independent experiments.
Supplementary Figure 4. Scheme of RIG-I-induced inflammasome activation

Pathway leading to IFN production and NF-κB-inflammasome activation

Nature Immunology: doi:10.1038/ni.1824
Supplementary Table 1. Primers used for quantitative real-time (RT) PCR

<table>
<thead>
<tr>
<th>Species</th>
<th>Gene Symbol</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mm</td>
<td>Il1b</td>
<td>5’-tgtaatgaaagacggacacc-3’</td>
<td>5’-tcttttgggtattgcttg-3’</td>
</tr>
<tr>
<td>Mm</td>
<td>Hprt1</td>
<td>5’-ggagcggtagcctcctc-3’</td>
<td>5’-ctggttcatcatcagtaatcac-3’</td>
</tr>
</tbody>
</table>

1Mm = mus musculus