Supplementary Figure 1 (a) and (b). Comparison of nickel-catalyzed reductive coupling method and base-mediated amidation of esters with anilines. Et = ethyl; Me = methyl; THF = tetrahydrofuran; KOT-Bu = potassium tert-butoxide.
Supplementary Figure 2. Application in synthesis of the key intermediate of an antipsychotic drug. Lit. = reported yield from literature; Me = methyl; Al(Oi-Pr)$_3$ = aluminum isopropoxide. EDC = N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide; HOBT = 1-hydroxybenzotriazole.
Supplementary Figure 3(a)-(c). Study of relationship between steric bulkiness of esters and relative reactivity of amidation. 1H NMR yields were shown. The ratios of amide products were determined by 1H NMR spectrometry. Me = methyl; t-Bu = tert-butyl.
Supplementary Figure 4. 1H and 13C NMR spectra of Methyl 5-(4-Chloro-3,5-dimethylphenoxy)pentanoate (S1)
Supplementary Figure 5. 1H and 13C NMR spectra of Methyl 5-Morpholinopentanoate (S2)
Supplementary Figure 6. 1H and 13C NMR spectra of Methyl 6-Morpholino-6-oxohexanoate (S3)
Supplementary Figure 7. 1H and 13C NMR spectra of Methyl 6-(Cyclohexylamino)-6-oxohexanoate (S4)
Supplementary Figure 8. 1H and 13C NMR spectra of Methyl 6-((1-(4-Fluorophenyl)-1H-indazol-5-yl)amino)-6-oxohexanoate (S5)
Supplementary Figure 9. 1H and 13C NMR spectra of Pentyl 2-((4-Methoxy-2-nitrophenyl)thio)benzoate (S6)
Supplementary Figure 10. 1H and 13C NMR spectra of N-(4-(tert-Butyl)phenyl)decanamide (3a)
Supplementary Figure 11. 1H and 13C NMR spectra of N-(4-Methoxyphenyl)decanamide (3b)
Supplementary Figure 12. 1H and 13C NMR spectra of N-(4-(Methylthio)phenyl)decanamide (3c)
Supplementary Figure 13. 1H and 13C NMR spectra of N-(3-Bromo-4-methylphenyl)decanamide (3d)
Supplementary Figure 14. 1H and 13C NMR spectra of N-(3-Chloro-4-methoxyphenyl)palmitamide (3e)
Supplementary Figure 15. 1H and 13C NMR spectra of N-(4-(1H-Pyrrol-1-yl)phenyl)decanamide (3f)
Supplementary Figure 16. 1H and 13C NMR spectra of N-(4-(1H-Pyrazol-1-yl)phenyl)decanamide (3g)
Supplementary Figure 17. 1H and 13C NMR spectra of N-(Quinolin-6-yl)decanamide (3h)
Supplementary Figure 18. 1H and 13C NMR spectra of N-(2-Methylbenzo[\textit{d}]thiazol-6-yl)decanamide (3i)
Supplementary Figure 19. 1H and 13C NMR spectra of N-(2-Phenylbenzo[d]oxazol-5-yl)decanamide (3j)
Supplementary Figure 20. 1H and 13C NMR spectra of N-(1-Methyl-1H-indol-5-yl)decanamide (3k)
Supplementary Figure 21. 1H and 13C NMR spectra of N-(Dibenzo[\(b,d\)]thiophen-3-yl)decanamide (3l)
Supplementary Figure 22. 1H and 13C NMR spectra of (E)-3-Phenyl-N-(4-styrylphenyl)propanamide (3m)
Supplementary Figure 23. 1H and 13C NMR spectra of N-(Benzo[d][1,3]dioxol-5-yl)undec-10-enamide (3n)
Supplementary Figure 24. 1H and 13C NMR spectra of N-Phenyloleamide (3o)
Supplementary Figure 25. 1H and 13C NMR spectra of 3-((4-(tert-Butyl)phenyl)ethynyl)-N-(p-toly1)cyclohexane-1-carboxamide (3p)
Supplementary Figure 26. 1H and 13C NMR spectra of N-(4-(tert-Butyl)phenyl)-7-chloroheptanamide (3q)
Supplementary Figure 27. 1H and 13C NMR spectra of N-[(4-(tert-Butyl)phenyl)-5-morpholinopentanamide (3r)
Supplementary Figure 28. 1H and 13C NMR spectra of N-(4-(tert-Butyl)phenyl)-3-(2-hydroxyphenyl)propanamide (3s)
Supplementary Figure 29. 1H and 13C NMR spectra of 5-(4-Chloro-3,5-dimethylphenoxy)-N-(p-tolyl)pentanamide (3t)
Supplementary Figure 30. 1H and 13C NMR spectra of 5-(3-Cyanophenoxy)-N-(p-tolyl)pentanamide (3u)
Supplementary Figure 31. 1H and 13C NMR spectra of 5-Oxo-5-phenyl-N-(p-tolyl)pentanamide (3v)
Supplementary Figure 32. 1H and 13C NMR spectra of Methyl 4-(2-Oxo-2-(p-tolylamino)ethyl)benzoate (3w)
Supplementary Figure 33. 1H and 13C NMR spectra of N-(4-(tert-Butyl)phenyl)-6-morpholino-6-oxohexanamide (3x)
Supplementary Figure 34. 1H and 13C NMR spectra of N^1-(4-(tert-Butyl)phenyl)-N^6-cyclohexyladipamide (3y)
Supplementary Figure 35. 1H and 13C NMR spectra of N^1-(4-(tert-Butyl)phenyl)-N^6-(1-(4-fluorophenyl)-1H-indazol-5-yl)adipamide (3z)
Supplementary Figure 36. 1H and 13C NMR spectra of N-(2,5-Dimethoxyphenyl)cyclobutanecarboxamide (4a)
Supplementary Figure 37. 1H and 13C NMR spectra of N-(Naphthalen-1-yl)cyclopentanecarboxamide (4b)
Supplementary Figure 38. 1H and 13C NMR spectra of tert-Butyl 3-((4-(tert-butyl)phenyl)carbamoyl)pyrrolidine-1-carboxylate (4c)
Supplementary Figure 39. 1H and 13C NMR spectra of N-(9H-Fluoren-2-yl)cyclohexanecarboxamide (4d)
Supplementary Figure 40. 1H and 13C NMR spectra of N-(3-Fluoro-4-methylphenyl)tetrahydro-2H-pyran-4-carboxamide (4e)
Supplementary Figure 41. 1H and 13C NMR spectra of N-([1,1'-Biphenyl]-3-yl)-1-methylcyclopropane-1-carboxamide (4f)
Supplementary Figure 42. 1H and 13C NMR spectra of N-(4-(tert-butyl)phenyl)pivalamide (4g)
Supplementary Figure 43. 1H and 13C NMR spectra of N-(4-(tert-butyl)phenyl)adamantane-1-carboxamide (4h)
Supplementary Figure 44. 1H and 13C NMR spectra of N-(4-(tert-butyl)phenyl)tetradecanamide (4i)
Supplementary Figure 45. \(^1H \) and \(^13C \) NMR spectra of \(N-(4-((4-Methoxyphenyl)amino)phenyl)benzamide (5a) \)
Supplementary Figure 46. 1H and 13C NMR spectra of N-(3-Methoxy-4-methylphenyl)benzamide (5b)
Supplementary Figure 47. 1H and 13C NMR spectra of 4-(Dimethylamino)-N-(p-tolyl)benzamide (5c)
Supplementary Figure 48. 1H and 13C NMR spectra of 4-Amino-N-(4-(tert-butyl)phenyl)benzamide (5d)
Supplementary Figure 49. 1H and 13C NMR spectra of N-(2,3-Dihydro-$1H$-inden-4-yl)-4-methoxybenzamide (5e)
Supplementary Figure 50. 1H and 13C NMR spectra of 4-((tert-Butyl)-N-(3-(methylthio)phenyl)benzamide (5f)
Supplementary Figure 51. 1H and 13C NMR spectra of 4-(tert-Butyl)-N-(3-cyano-4-methylphenyl)benzamide (5g)
Supplementary Figure 52. 1H and 13C NMR spectra of 4-(tert-Butyl)-N-(4-(methylsulfonyl)phenyl)benzamide (5h)
Supplementary Figure 53. 1H and 13C NMR spectra of 4-(tert-Butyl)-N-(4-((tert-butyl)dimethylsilyl)oxy)ethyl)phenyl)benzamide (5i)
Supplementary Figure 54. 1H and 13C NMR spectra of N-(4-(9H-Carbazol-9-yl)phenyl)-4-methylbenzamide (5j)
Supplementary Figure 55. 1H and 13C NMR spectra of N-(4-(tert-Butyl)phenyl)-4-fluorobenzamide (5k)
Supplementary Figure 56. 1H and 13C NMR spectra of N-(4-(tert-Butyl)phenyl)-4-(trifluoromethyl)benzamide (5l)
Supplementary Figure 57. 1H and 13C NMR spectra of N-(2,4-Dimethylphenyl)-3-methoxybenzamide (5m)
Supplementary Figure 58. 1H and 13C NMR spectra of N-(3-(Trifluoromethyl)phenyl)-2-naphthamide (5n)
Supplementary Figure S9. 1H and 13C NMR spectra of N-(p-Tolyl)cinnamamide (5o)
Supplementary Figure 60. 1H and 13C NMR spectra of 5-Methyl-N-(p-tolyl)nicotinamide (5p)
Supplementary Figure 61. 1H and 13C NMR spectra of N-(p-Tolyl)thiophene-3-carboxamide (5q)
Supplementary Figure 62. 1H and 13C NMR spectra of N-(p-Tolyl)furan-3-carboxamide (5r)
Supplementary Figure 63. 1H and 13C NMR spectra of 1-Benzyl-N-(4-(tert-butyl)phenyl)-1H-indole-6-carboxamide (5s)
Supplementary Figure 64. 1H and 13C NMR spectra of 8-Methoxydibenzo[b,f][1,4]thiazepin-11(10H)-one (5t)
Supplementary Figure 65. 1H and 13C NMR spectra of Dibenzo[b,f][1,4]oxazepin-11(10H)-one (5u)
Supplementary Figure 66. 1H and 13C NMR spectra of 7-Chlorodibenzo[b,f][1,4]oxazepin-11(10H)-one (5v)
Supplementary Figure 67. 1H and 13C NMR spectra of 8-Chlorodibenzo[b,f][1,4]thiazepin-11(10H)-one (6a)
Supplementary Figure 68. 1H and 13C NMR spectra of Dibenzo[b,f][1,4]thiazepin-11(10H)-one (6b)
Supplementary Figure 69. 1H and 13C NMR spectra of 2-(2-Chlorophenyl)-N-(2-phenylbenzo[d]oxazol-5-yl)acetamide (6c)
Supplementary Figure 70. 1H and 13C NMR spectra of N-(2-Phenylbenzo[d]oxazol-5-yl)benzamide (6d)
Supplementary Figure 71. 1H and 13C NMR spectra of N-(2-(4-Fluorophenyl)benzo[d]oxazol-5-yl)-2-phenylacetamide (6e)
Supplementary Figure 72. 1H and 13C NMR spectra of (R)-3a-Ethyl-2,3,3a,4,5,7-hexahydrobenzo[2,3]azonino[6,5,4-ih]indolizin-6(1H)-one ((-)-Rhazinilam, 6f)
Supplementary Figure 73. \(^1 \text{H} \) and \(^{13} \text{C} \) NMR spectra of N-(4-(tert-Butyl)phenyl)-6-((4,4-dimethylthiochroman-6-yl)ethynyl)nicotinamide (6g)
Supplementary Figure 74. 1H and 13C NMR spectra of N-(4-(tert-Butyl)phenyl)-2-(4-chloro-2-methylphenoxy)acetamide (6h)
Supplementary Tables

Supplementary Table 1. Optimization of Ligand in Nickel-Catalyzed Reductive Coupling of Methyl Benzoate with Nitrobenzene.

```
Ph\(^{\text{OMe}}\) + Ph\(^{-\text{NO}_2}\) \[\text{Ni(glyme)Cl}_2 (10 \text{ mol} \%), \text{ ligand (10 mol %)} \rightarrow Ph\(^{\text{O}}\) HN\(^{-\text{Ph}}\)\]
```

entry	ligand	yield (%)
1	1,10-phenanthroline	85
2	2,2'-dipyridyl	69
3	\(t\)-Bu \(t\)-Bu	43
4	MeO	61
5	Me-N-N-Me	34

(a) GC yield using \(n\)-dodecane as an internal standard. (b) 20 mol % of ligand was used.

Supplementary Table 2. Optimization of Loading of Nitrobenzene in Nickel-Catalyzed Reductive Coupling of Methyl Benzoate with Nitrobenzene.

```
Ph\(^{\text{OMe}}\) + Ph\(^{-\text{NO}_2}\) \[\text{Ni(glyme)Cl}_2 (10 \text{ mol} \%), \text{ phen (10 mol %)} \rightarrow Ph\(^{\text{O}}\) HN\(^{-\text{Ph}}\)\]
```

entry	PhNO\(_2\) (equiv)	yield (%)
1	1.5	81
2	1.7	73
3	1.3	93
4	1.2	81

(a) GC yield using \(n\)-dodecane as an internal standard.
Supplementary Table 3. Optimization of Loadings of Zinc and Chlorotrimethylsilane in Nickel-Catalyzed Reductive Coupling of Methyl Benzoate with Nitrobenzene.

![Chemical Reaction Diagram](insert)

<table>
<thead>
<tr>
<th>entry</th>
<th>Zn (equiv)</th>
<th>TMSCI (equiv)</th>
<th>yield (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>3.5</td>
<td>2</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1.5</td>
<td>61</td>
</tr>
<tr>
<td>4</td>
<td>3.5</td>
<td>1.5</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>4.5</td>
<td>1.5</td>
<td>88</td>
</tr>
</tbody>
</table>

^a GC yield using n-dodecane as an internal standard.

Supplementary Table 4. Optimization of Loadings of Ni(glyme)Cl₂ and 1,10-phenanthroline in Nickel-Catalyzed Reductive Coupling of Methyl Benzoate with Nitrobenzene.

![Chemical Reaction Diagram](insert)

<table>
<thead>
<tr>
<th>entry</th>
<th>Ni(glyme)Cl<sub>2</sub> (mol %)</th>
<th>phen (mol %)</th>
<th>yield (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
<td>93</td>
</tr>
<tr>
<td>2</td>
<td>7.5</td>
<td>7.5</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>10</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>7.5</td>
<td>15</td>
<td>82</td>
</tr>
</tbody>
</table>

^a GC yield using n-dodecane as an internal standard.
Supplementary Table 5. Optimization of temperature in Nickel-Catalyzed Reductive Coupling of Methyl Benzoate with Nitrobenzene.

![Chemical Reaction](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>temp. (°C)</th>
<th>yield (%)^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>120</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>130</td>
<td>83</td>
</tr>
<tr>
<td>3</td>
<td>110</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>84</td>
</tr>
</tbody>
</table>

(a) GC yield using n-dodecane as an internal standard.

Supplementary Table 6. Optimization of Solvent in Nickel-Catalyzed Reductive Coupling of Methyl Benzoate with Nitrobenzene

![Chemical Reaction](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent (mL)</th>
<th>yield (%)^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NMP (0.5)</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>DMA (0.5)</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>DMF (0.5)</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>DMSO (0.5)</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>1,4-dioxane (0.5)</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>NMP (1)</td>
<td>57</td>
</tr>
</tbody>
</table>

(a) GC yield using n-dodecane as an internal standard.
Supplementary Table 7. Optimization of Reductant in Nickel-Catalyzed Reductive Coupling of Methyl Benzoate with Nitrobenzene.

\[
\begin{align*}
\text{Ph} & \text{O} \quad \text{Ni(glyme)Cl}_2 \ (7.5 \text{ mol} \ %) \\
\text{OMe} & \text{phen} \ (7.5 \text{ mol} \ %) \\
1a & \text{reductant} \ (4 \text{ equiv}) \\
0.25 \text{ mmol} & \text{TMSCl} \ (2 \text{ equiv}) \\
& \text{NMP} \ (0.5 \text{ mL}), 120 \ ^\circ \text{C}, 16 \text{ h} \\
+ \quad \text{Ph} & \text{H} \quad \text{Ph} \\
\text{NO}_2 & \text{N} \\
2a & \text{yield} (\%)^a \\
(1.3 \text{ equiv}) & \\
& \\
& \\
\text{entry} & \text{reductant} & \\
1 & \text{Zn} & 93 \\
2 & \text{Mn} & 75 \\
\end{align*}
\]

(a) GC yield using n-dodecane as an internal standard.

Supplementary Table 8. Optimization of Halotrimethylsilane Additive in Nickel-Catalyzed Reductive Coupling of Methyl Benzoate with Nitrobenzene.

\[
\begin{align*}
\text{Ph} & \text{O} \quad \text{Ni(glyme)Cl}_2 \ (7.5 \text{ mol} \ %) \\
\text{OMe} & \text{phen} \ (7.5 \text{ mol} \ %) \\
1a & \text{reductant} \ (4 \text{ equiv}) \\
0.25 \text{ mmol} & \text{Zn} \ (4 \text{ equiv}), \text{TMSX} \ (2 \text{ equiv}) \\
& \text{NMP} \ (0.5 \text{ mL}), 120 \ ^\circ \text{C}, 16 \text{ h} \\
+ \quad \text{Ph} & \text{H} \quad \text{Ph} \\
\text{NO}_2 & \text{N} \\
2a & \text{yield} (\%)^a \\
(1.3 \text{ equiv}) & \\
& \\
& \\
\text{entry} & \text{TMSX} & \\
1 & \text{TMSCl} & 94 \\
2 & \text{TMSBr} & 84 \\
3 & \text{TMSI} & 58 \\
\end{align*}
\]

(a) GC yield using n-dodecane as an internal standard.
Supplementary Table 9. Optimization of Transition Metal Catalyst in Nickel-Catalyzed Reductive Coupling of Methyl Benzoate with Nitrobenzene.

\[
\begin{align*}
\text{Ph} & \quad \text{OMe} \\
1a \quad \text{(1 equiv)} & \quad 0.25 \text{ mmol} \\
\text{Ph} & \quad \text{NO}_2 \\
2a \quad \text{(1.3 equiv)} & \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>entry</th>
<th>metal catalyst</th>
<th>yield (%)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ni(glyme)Cl(_2)</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>Ni(glyme)Br(_2)</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>Ni(diglyme)Br(_2)</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>NiBr(_2)</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>NiCl(_2)</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>Ni(COD)(_2)</td>
<td>82</td>
</tr>
<tr>
<td>7</td>
<td>FeCl(_2) \cdot 4\text{H}_2\text{O}</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>FeBr(_2)</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>CoCl(_2)</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>Mn(OAc)(_2) \cdot 4\text{H}_2\text{O}</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>Cul</td>
<td>13</td>
</tr>
</tbody>
</table>

(a) GC yield using \(n\)-dodecane as an internal standard.

Supplementary Table 10. Control Experiments in Nickel-Catalyzed Reductive Coupling of Methyl Benzoate with Nitrobenzene.

"standard conditions":

\[
\begin{align*}
\text{Ph} & \quad \text{OMe} \\
1a \quad \text{(1 equiv)} & \quad 0.25 \text{ mmol} \\
\text{Ph} & \quad \text{NO}_2 \\
2a \quad \text{(1.3 equiv)} & \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>entry</th>
<th>variations from standard conditions</th>
<th>yield (%)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>----</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>no metal catalyst</td>
<td>7 (30% conv.)</td>
</tr>
<tr>
<td>3</td>
<td>no ligand</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>no TMSCl</td>
<td>0 (7% conv.)</td>
</tr>
<tr>
<td>5</td>
<td>no Zn</td>
<td>0 (0% conv.)</td>
</tr>
</tbody>
</table>

(a) GC yield using \(n\)-dodecane as an internal standard.
Supplementary Table 11. Optimizations of Nickel-Catalyzed Reductive Coupling of Methyl Decanoate with Nitrobenzene.

"standard conditions"

\[
\begin{align*}
\text{Ni(glyme)Cl}_2 \quad \text{(7.5 mol %)} & \quad \text{phen (7.5 mol %)} \\
\text{Zn (4 equiv)} & \quad \text{TMSCl (2 equiv)} \\
\text{NMP (0.5 mL), 90 °C, 16 h}
\end{align*}
\]

<table>
<thead>
<tr>
<th>entry</th>
<th>variations from standard conditions</th>
<th>yield (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>----</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Ni(glyme)Br\textsubscript{2} instead of Ni(glyme)Cl\textsubscript{2}</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>Ni(diglyme)Br\textsubscript{2} instead of Ni(glyme)Cl\textsubscript{2}</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>NiCl\textsubscript{2} instead of Ni(glyme)Cl\textsubscript{2}</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>NiBr\textsubscript{2} instead of Ni(glyme)Cl\textsubscript{2}</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>NiCl\textsubscript{2} \cdot 6H\textsubscript{2}O instead of Ni(glyme)Cl\textsubscript{2}</td>
<td>7 (93% conv.)</td>
</tr>
<tr>
<td>7</td>
<td>FeCl\textsubscript{2} \cdot 4H\textsubscript{2}O instead of Ni(glyme)Cl\textsubscript{2}</td>
<td>25 (34% conv.)</td>
</tr>
<tr>
<td>8</td>
<td>FeBr\textsubscript{2} instead of NiCl\textsubscript{2}(glyme)</td>
<td>24 (48% conv.)</td>
</tr>
<tr>
<td>9</td>
<td>CoCl\textsubscript{2} instead of NiCl\textsubscript{2}(glyme)</td>
<td>20 (34% conv.)</td>
</tr>
<tr>
<td>10</td>
<td>Cul instead of NiCl\textsubscript{2}(glyme)</td>
<td>3 (10% conv.)</td>
</tr>
<tr>
<td>11</td>
<td>2,2'-dipyridyl instead of phen</td>
<td>94</td>
</tr>
<tr>
<td>12</td>
<td>4,4'-di-tert-butyl-2,2'-dipyridyl instead of phen</td>
<td>94</td>
</tr>
<tr>
<td>13</td>
<td>3,4,7,8-tetramethyl-1,10-phenanthroline instead of phen</td>
<td>95</td>
</tr>
<tr>
<td>14</td>
<td>bathophenanthroline instead of phen</td>
<td>69 (83% conv.)</td>
</tr>
<tr>
<td>15</td>
<td>Mn instead of Zn</td>
<td>84</td>
</tr>
<tr>
<td>16</td>
<td>Ni(glyme)Cl\textsubscript{2} (5 mol %)/phen (5 mol %) instead of Ni(glyme)Cl\textsubscript{2} (7.5 mol %)/phen (7.5 mol %)</td>
<td>82</td>
</tr>
<tr>
<td>17</td>
<td>Ni(glyme)Cl\textsubscript{2} (10 mol %)/phen (10 mol %) instead of Ni(glyme)Cl\textsubscript{2} (7.5 mol %)/phen (7.5 mol %)</td>
<td>97</td>
</tr>
<tr>
<td>18</td>
<td>Zn (3.5 equiv) instead of (4 equiv)</td>
<td>55</td>
</tr>
<tr>
<td>19</td>
<td>TMSCl (1.5 equiv) instead of (2 equiv)</td>
<td>84</td>
</tr>
<tr>
<td>20</td>
<td>Zn (3.5 equiv)/TMSCl (1.5 equiv) instead of Zn (4 equiv)/TMSCl (2 equiv)</td>
<td>69</td>
</tr>
<tr>
<td>21</td>
<td>PhNO\textsubscript{2} (1.1 equiv) instead of (1.2 equiv)</td>
<td>86</td>
</tr>
<tr>
<td>22</td>
<td>70 °C instead of 90 °C</td>
<td>61 (70% conv.)</td>
</tr>
</tbody>
</table>

control experiments:

<table>
<thead>
<tr>
<th>entry</th>
<th>variations from standard conditions</th>
<th>yield (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>no metal catalyst</td>
<td>2 (87% conv.)</td>
</tr>
<tr>
<td>24</td>
<td>no ligand</td>
<td>77</td>
</tr>
<tr>
<td>25</td>
<td>no TMSCl</td>
<td>0 (4% conv.)</td>
</tr>
<tr>
<td>26</td>
<td>no Zn</td>
<td>0 (7% conv.)</td>
</tr>
</tbody>
</table>

(a) GC yield using n-dodecane as an internal standard.
Supplementary Table 12. Optimization of Zn and TMSCl loading for the reaction between nitrosobenzene and methyl decanoate.

\[
\begin{array}{cccc}
\text{entry} & \text{Zn (equiv)} & \text{TMSCl (equiv)} & \text{conversion} (%) \\
1 & 4 & 2 & 100 \\
2 & 3 & 2 & 100 \\
3 & 3 & 1 & 91 \\
4 & 2 & 1 & 22 \\
\end{array}
\]

Supplementary Table 13. Optimization of Zn and TMSCl loading for the reaction between N-phenylhydroxyamine and methyl decanoate.

\[
\begin{array}{cccc}
\text{entry} & \text{Zn (equiv)} & \text{TMSCl (equiv)} & \text{conversion} (%) \\
1 & 4 & 2 & 78 \\
2 & 3 & 2 & 60 \\
3 & 2 & 2 & 17 \\
4 & 2 & 1 & 11 \\
\end{array}
\]
Supplementary Table 14. Screening of conditions for the reaction between aniline and methyl decanoate.

<table>
<thead>
<tr>
<th>entry</th>
<th>Zn (equiv)</th>
<th>TMSCl (equiv)</th>
<th>ZnCl₂ (equiv)</th>
<th>conversion (%)</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>45</td>
<td>44</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>44</td>
<td>39</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Supplementary Table 15. Optimization of Zn and TMSCl loading for the reaction between azoxybenzene and methyl decanoate.

<table>
<thead>
<tr>
<th>entry</th>
<th>Zn (equiv)</th>
<th>TMSCl (equiv)</th>
<th>conversion (%)</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>85</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0.5</td>
<td>95</td>
<td>93</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.091</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0.5</td>
<td>96</td>
<td>99</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0.5</td>
<td>91</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.5</td>
<td>53</td>
<td>45</td>
</tr>
</tbody>
</table>
Supplementary Methods

(A) General Analytical Information.

Nuclear Magnetic Resonance spectra were recorded on a Bruker Avance 400 MHz instruments at ambient temperature. All 1H NMR spectra were measured in part per million (ppm) relative to the signal of tetramethylsilane (TMS) added into the deuterated chloroform (CDCl$_3$, 0.00 ppm), the signal of residual dichloromethane in deuterated dichloromethane (CD$_2$Cl$_2$, 5.32 ppm), or the signal of residual dimethyl sulfoxide in deuterated dimethyl sulfoxide (DMSO-d_6, 2.50 ppm). Data for 1H NMR were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qu = quintet, m = multiplet, ovrlp = overlap, br = broad), coupling constants, and integration. All 13C NMR spectra were reported in ppm relative to CDCl$_3$ (77.16 ppm), CD$_2$Cl$_2$ (53.84 ppm), or DMSO-d_6 (39.52 ppm) and were obtained with complete 1H decoupling. The 19F NMR spectra were obtained with complete 1H decoupling as well. α,α,α-Trifluorotoluene was used as the internal standard, with a chemical shift of -63.73 ppm relative to CFCl$_3$. All GC analyses were performed on a Perkin-Elmer Clarus 400 GC system with a FID detector. All GC-MS analyses were performed on an Agilent Technologies 7890A GC system equipped with a 5975C MS detector. High-resolution mass spectra (HRMS) by electrospray ionization (ESI) method were performed at the EPFL ISIC Mass Spectroscopy Service with a Micro Mass QTOF Ultima spectrometer.

(B) General Reagent Information.

Unless otherwise noted, all chemicals were used as received without further purifications. Anhydrous N-methylpyrrolidone (NMP) (99.8% purity, in Sure-Seal bottle), zinc powder (Zn, >98% purity), manganese powder (Mn, 99.99% purity), chlorotrimethylsilane (TMSCl, ≥98% purity), and nickel(II) chloride ethylene glycol dimethyl ether complex (Ni(glyme)Cl$_2$) were purchased from Aldrich Chemical Co.. 1,10-Phenanthroline (phen, ≥99% purity) was purchased from Acros Chemicals. Iodotrimethylsilane (TMSI, ≥95% purity) was purchased from TCI Chemicals. The following known starting materials (esters and nitroarenes) were prepared according to the literature procedures: 2-16
(C) General Manipulation Considerations.

All manipulations for the nickel-catalyzed reductive coupling reactions of nitroarenes with esters were set up in a 30 mL Teflon-screw capped test tubes (unless otherwise noted) under an inert nitrogen (N\textsubscript{2}) atmosphere using glove-box techniques. The test tubes were then sealed with airtight electrical tapes and the reaction mixtures were stirred in a preheated oil-bath. Flash column chromatography was performed using silica gel (Silicycle, ultra pure grade). Preparative thin-layer chromatography (preparative TLC) was performed using preparative TLC plate (Merck Millipore, TLC Silica gel 60 F\textsubscript{254}, 20 x 20 cm, catalogue number: 1.05715.0001) in a developing tank. Notably, the TLC plates used for the purification of amide products were washed with hexanes/triethylamine solution (volume ratio ~20:1) prior to the use in order to minimize the product loss. The eluents for column chromatography and preparative TLC were presented as ratios of solvent volumes. Yields reported in the publication are of isolated materials unless otherwise noted. All new starting materials and all amide products were characterized by 1H and 13C NMR spectroscopies and high-resolution mass spectrometry (HRMS).
Synthesis of Starting Materials:

Methyl 5-(4-Chloro-3,5-dimethylphenoxy)pentanoate (S1). An oven-dried 100 mL round-bottom flask equipped with a Teflon-coated magnetic stir bar was sequentially charged with 4-chloro-3,5-dimethylphenol (1 equiv, 1.81 g, 11.6 mmol), DMF (anhydrous, 30 mL), and sodium hydride (60% in paraffin oil, 1.5 equiv, 696 mg, 17.4 mmol). The resulting mixture was stirred at room temperature for 30 min. Sodium iodide (40 mol %, 697 mg, 4.64 mmol) and methyl 5-chloropentanoate (1 equiv, 1.67 mL, 11.6 mmol) were then added, and the reaction mixture was stirred at 90 °C in a preheated oil bath overnight. After the reaction, the crude product was quenched with water (~20 mL) and then washed with saturated NaOH solution (~200 mL) and EtOAc (~100 mL). The organic fraction was concentrated in vacuo with the aid of a rotary evaporator, and the residue was purified by flash chromatography with silica gel (without prior washing with Et$_3$N/hexanes) using a mixture of hexanes/EtOAc (5:1) as an eluent to afford the title compound (S1) as yellow oil (1.72 g, 55%). 1H NMR (400 MHz, CDCl$_3$): δ 6.61 (s, 2 H), 3.90 (t, J = 6.0 Hz, 2 H), 3.66 (s, 3 H), 2.38 (t, J = 7.1 Hz, 2 H), 2.32 (s, 6 H), 1.81-1.76 (ovrlp, 4 H). 13C NMR (100 MHz, CDCl$_3$): δ 173.8, 156.8, 137.0, 126.1, 114.5, 67.5, 51.5, 33.7, 28.7, 21.7, 20.9. HRMS (ESI): Calcd for C$_{14}$H$_{20}$ClO$_3$ [M+H]: 271.1095; Found: 271.1097.

Methyl 5-Morpholinopentanoate (S2). An oven-dried 100 mL round-bottom flask equipped with a Teflon-coated magnetic stir bar was sequentially charged with morpholine (5 equiv, 8.6 mL, 99.5 mmol), methyl 5-chloropentanoate (1 equiv, 3.00 g, 19.9 mmol), sodium iodide (1 equiv, 1.50 g, 9.95 mmol), and DMF (anhydrous, 30 mL), and the reaction mixture was stirred at 90 °C in a preheated oil bath overnight. After the reaction, the crude product was washed with water (~300 mL) and EtOAc (~100 mL). The organic fraction was concentrated in vacuo with the aid of a rotary evaporator, and the residue was purified by flash chromatography with silica gel (without prior washing with Et$_3$N/hexanes) using a mixture of hexanes/EtOAc (3:1) as an eluent to afford the title compound (S2) as brown oil (1.23 g, 31%). 1H NMR (400 MHz, CDCl$_3$): δ 3.71 (t, J = 4.7 Hz, 4 H), 3.67 (s, 3 H), 2.42 (t, J = 4.2 Hz, 4 H), 2.36-2.32 (ovrlp, 4 H), 1.66 (qu, J = 7.8 Hz, 2 H), 1.52 (qu, J = 7.9 Hz, 2 H). 13C NMR (100 MHz, CDCl$_3$): δ 174.1, 67.1, 58.6, 53.8, 51.6, 34.0, 26.1, 22.9. HRMS (ESI): Calcd for C$_{10}$H$_{20}$NO$_3$ [M+H]: 202.1443; Found: 202.1448.
Methyl 6-Morpholino-6-oxohexanoate (S3). An oven-dried 250 mL round-bottom flask equipped with a Teflon-coated magnetic stir bar was sequentially charged with morpholine (1.2 equiv, 1.1 mL, 12.8 mmol), CH₂Cl₂ (100 mL), triethylamine (1.8 equiv, 2.7 mL, 19.3 mmol), N,N-dimethyl-4-aminopyridine (3 mol %, 0.321 mmol, 39 mg), and methyl 6-chloro-6-oxohexanoate (1 equiv, 1.91 g, 10.7 mmol), and the resulting mixture was stirred at room temperature overnight. After the reaction, the crude product was washed with dilute HCl solution (~1 M, ~100 mL). The aqueous fraction was removed, and the organic fraction was further neutralized with saturated NaHCO₃ solution (~100 mL). The organic fraction was concentrated in vacuo with the aid of a rotary evaporator, and the residue was purified by flash chromatography with silica gel (without prior washing with Et₃N/hexanes) using a mixture of hexanes/EtOAc (3:1) as an eluent to afford the title compound (S3) as brown oil (1.10 g, 45%).

¹H NMR (400 MHz, CDCl₃): δ 3.68-3.65 (ovrlp, 7 H), 3.61 (t, J = 4.7 Hz, 2 H), 3.46 (t, J = 4.8 Hz, 2 H), 2.37-2.31 (ovrlp, 4 H), 1.72-1.65 (ovrlp, 4 H).

¹³C NMR (100 MHz, CDCl₃): δ 173.8, 171.1, 66.9, 66.6, 51.5, 45.9, 41.8, 33.7, 32.6, 24.6, 24.5.

Methyl 6-(Cyclohexylamino)-6-oxohexanoate (S4). An oven-dried 250 mL round-bottom flask equipped with a Teflon-coated magnetic stir bar was sequentially charged with cyclohexylamine (2.5 equiv, 2.9 mL, 25.0 mmol), CH₂Cl₂ (100 mL), and methyl 6-chloro-6-oxohexanoate (1 equiv, 1.79 g, 10.0 mmol), and the resulting mixture was stirred at room temperature overnight. After the reaction, the crude product was washed with diluted HCl solution (~1 M, ~100 mL). The aqueous fraction was removed, and the organic fraction was further neutralized with saturated NaHCO₃ solution (~100 mL). The organic fraction was concentrated in vacuo with the aid of a rotary evaporator, and the residue was purified by recrystallized using CH₂Cl₂/hexanes as solvents to afford the title compound (S4) as white solid (1.93 g, 80%).

¹H NMR (400 MHz, CDCl₃): δ 5.75 (s, 1 H), 3.80-3.71 (m, 1 H), 3.67 (s, 3 H), 2.34 (t, J = 6.6 Hz, 2 H), 2.17 (t, J = 6.6 Hz, 2 H), 1.90 (dd, J = 11.4 Hz, J = 2.5 Hz, 2 H), 1.74-1.59 (ovrlp, 7 H), 1.36 (qt, J = 12.2 Hz, J = 3.2 Hz, 2 H), 1.14 (qu/d, J = 12.2 Hz, J = 3.4 Hz, 2 H).

¹³C NMR (100 MHz, CDCl₃): δ 174.0, 171.6, 51.5, 48.1, 36.4, 33.7, 33.2, 25.6, 25.2, 24.9, 24.4.

HRMS (ESI): Calcd for C₁₃H₂₄NO₃ [M+H]: 242.1756; Found: 242.1758.
Methyl 6-((1-(4-Fluorophenyl)-1H-indazol-5-yl)amino)-6-oxohexanoate (S5). An oven-dried 250 mL round-bottom flask equipped with a Teflon-coated magnetic stir bar was sequentially charged with 1-(4-fluorophenyl)-1H-indazol-5-amine\(^\text{17}\) (1 equiv, 327 mg, 1.44 mmol), CH\(_2\)Cl\(_2\) (30 mL), triethylamine (1.5 equiv, 0.3 mL, 2.16 mmol), \(N,N\)-dimethyl-4-aminopyridine (10 mol \%, 18 mg, 0.144 mmol), and methyl 6-chloro-6-oxohexanoate (1.1 equiv, 283 mg, 1.58 mmol), and the resulting mixture was stirred at room temperature overnight. After the reaction, the crude product was washed with dilute HCl solution (~1 M, ~30 mL). The aqueous fraction was removed, and the organic fraction was further neutralized with saturated NaHCO\(_3\) solution (~50 mL). The organic fraction was concentrated in vacuo with the aid of a rotary evaporator, and the residue was purified by recrystallization using CH\(_2\)Cl\(_2\)/hexanes as solvents to afford the title compound (S5) as white solid (500 mg, 94\%). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.14-8.11 (ovrlp, 2 H), 7.68-7.58 (ovrlp, 3 H), 7.59 (d, \(J = 9.0\) Hz, 1 H), 7.43 (dd, \(J = 9.0\) Hz, \(J = 1.8\) Hz, 1 H), 7.22 (dd, \(J = 8.5\) Hz, \(J = 8.5\) Hz, 1 H), 3.69 (s, 3 H), 2.45-2.38 (ovrlp, 4 H), 1.85-1.66 (ovrlp, 4 H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 174.3, 171.1, 161.3 (d, \(J_{CF} = 245.0\) Hz), 136.3, 135.5, 132.2, 125.5, 124.5 (d, \(J_{CF} = 8.4\) Hz), 121.9, 116.5 (d, \(J_{CF} = 22.8\) Hz), 112.2, 110.5, 51.8, 37.2, 33.7, 25.1, 24.4. HRMS (ESI): Calcd for C\(_{20}\)H\(_{21}\)FN\(_3\)O\(_3\) [M+H]: 370.1567; Found: 370.1564.

Pentyl 2-((4-Methoxy-2-nitrophenyl)thio)benzoate (S6). The title compound was synthesized according to the literature procedures with small variations.\(^1\) In a nitrogen-filled glove box, an 30 mL Teflon-screw cap test tube equipped with a Teflon-coated magnetic stir bar was sequentially charged with 1-bromo-4-methoxy-2-nitrobenzene (1 equiv, 232 mg, 1.00 mmol), 2-mercaptobenzoic acid (1.2 equiv, 190 mg, 1.20 mmol), K\(_2\)CO\(_3\) (1.5 equiv, 207 mg, 1.50 mmol), copper powder (20 mol \%, 13 mg), and 1-pentanol (3 mL), and the resulting mixture was stirred at 140 °C in a preheated oil bath for 24 h. After the reaction, the crude product was washed with EtOAc (~100 mL) and saturated NaOH solution (~100 mL). The aqueous fraction was removed, and the organic fraction was further washed with water (~100 mL). The organic fraction was concentrated in vacuo with the aid of a rotary evaporator, and the residue was purified by flash chromatography with silica gel (without prior washing with Et\(_3\)N/hexanes) using a mixture of hexanes/EtOAc (4:1) as an eluent to afford the title compound (S6) as brown oil (296 mg, 75\%). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.94 (dd, \(J = 7.5\) Hz, \(J = 1.0\) Hz, 1 H), 7.55 (d, \(J = 2.6\) Hz, 1 H), 7.39 (td, \(J = 7.4\) Hz, \(J = 1.1\) Hz, 1 H), 7.34 (d, \(J = 7.3\) Hz, 1 H), 7.21 (d, \(J = 8.8\) Hz, 1 H), 7.16 (d, \(J = 7.4\) Hz, 1 H), 7.05 (dd, \(J = 8.8\) Hz, \(J = 2.6\) Hz, 1 H), 4.27 (t, \(J =
6.6 Hz, 2 H), 3.88 (s, 3 H), 1.68 (qu, J = 6.8 Hz, 2 H), 1.40-1.28 (ovrlp, 4 H), 0.90 (t, J = 6.8 Hz, 3 H).

\(^{13}\text{C} \text{ NMR} \) (100 MHz, CDCl\(_3\)): δ 166.8, 159.3, 150.5, 137.2, 135.4, 132.43, 132.41, 132.1, 131.0, 127.3, 123.7, 120.6, 109.5, 65.8, 56.1, 28.4, 28.3, 22.4, 14.1. \(\text{HRMS (ESI)}: \) Calcd for C\(_{19}\)H\(_{22}\)NO\(_5\)S [M+H]: 376.1213; Found: 376.1221.

Synthesis of Amides

Nickel-Catalyzed Reductive Coupling of Nitroarene with Alkyl Alkanoate (General Procedure A). An oven-dried 30 mL re-sealable screw-cap test tube equipped with a Teflon-coated magnetic stir bar was sequentially charged with zinc powder (Zn, 4 equiv, 2.0 mmol, 131 mg), ester (1 equiv, 0.50 mmol), nitroarene (1.2 equiv, 0.60 mmol), 1,10-phenanthroline (phen, 7.5 mol %, 6.8 mg), nickel(II) chloride ethylene glycol dimethyl ether complex (Ni(glyme)Cl\(_2\), 7.5 mol %, 8.3 mg), N-methylpyrrolidone solvent (NMP, 1.0 mL), and chlorotrimethylsilane (TMSCl, 2 equiv, 1.0 mmol, 128 μL). The resulting mixture was stirred at 90 °C in a preheated oil bath for 16 h. After the reaction, the reaction mixture was cooled down to room temperature, and the crude product was acidified with saturated NH\(_4\)Cl solution (~5 mL) and then neutralized with saturated NaHCO\(_3\) solution (~10 mL). The crude product in the aqueous fraction was extracted with EtOAc (~20 mL). The aqueous fraction was further washed with EtOAc (3 x ~10 mL). The combined organic fractions were concentrated in vacuo with the aid of a rotary evaporator. The crude product residue was purified by preparative thin-layer chromatography (TLC) using a solvent mixture (dichloromethane (CH\(_2\)Cl\(_2\)), hexanes, and/or ethyl acetate (EtOAc)) as an eluent to afford the purified amide product.

Nickel-Catalyzed Reductive Coupling of Nitroarene with Alkyl Arenoate (General Procedure B). An oven-dried 30 mL re-sealable screw-cap test tube equipped with a Teflon-coated magnetic stir bar was sequentially charged with zinc powder (Zn, 4 equiv, 2.0 mmol, 131 mg), ester (1 equiv, 0.50 mmol), nitroarene (1.3 equiv, 0.65 mmol), 1,10-phenanthroline (phen, 7.5 mol %, 6.8 mg), nickel(II) chloride ethylene glycol dimethyl ether complex (Ni(glyme)Cl\(_2\), 7.5 mol %, 8.3 mg), N-methylpyrrolidone solvent (NMP, 1.0 mL), and chlorotrimethylsilane (TMSCl, 2 equiv, 1.0 mmol, 128 μL). The resulting mixture was stirred at 120 °C in a preheated oil bath for 16 h. After the reaction, the reaction mixture was cooled down to room temperature, and the crude product was acidified with saturated NH\(_4\)Cl solution (~5 mL) and then neutralized with saturated NaHCO\(_3\) solution (~10 mL). The crude product in the aqueous fraction was extracted with EtOAc (~20 mL). The aqueous fraction was further washed with EtOAc (3 x ~10 mL). The combined organic fractions were concentrated in vacuo with the aid of a rotary evaporator. The crude product residue was purified by preparative thin-layer chromatography (TLC) using a solvent mixture (dichloromethane (CH\(_2\)Cl\(_2\)), hexanes, and/or ethyl acetate (EtOAc)) as an eluent to afford the purified amide product.
N-(4-(tert-Butyl)phenyl)decanamide (3a).

(i) Synthesized from methyl decanoate: Following the general procedure A, the title compound was prepared using methyl decanoate (0.50 mmol, 93 mg) and 1-(tert-butyl)-4-nitrobenzene (0.60 mmol, 108 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (5:1) as an eluent to afford the title compound (3a) as pale brown solid (110 mg, 72%). 1H NMR (400 MHz, CDCl$_3$): δ 7.43 (d, $J = 8.5$ Hz, 2 H), 7.32 (d, $J = 8.5$ Hz, 2 H), 7.27 (s, 1 H), 2.33 (t, $J = 7.6$ Hz, 2 H), 1.72 (qu, $J = 7.3$ Hz, 2 H), 1.39-1.22 (ovrlp, 21 H), 0.88 (t, $J = 7.0$ Hz, 3 H). 13C NMR (100 MHz, CDCl$_3$): δ 171.5, 147.2, 135.5, 125.9, 119.8, 37.9, 34.5, 32.0, 31.5, 29.6, 29.5, 29.4, 25.9, 22.8, 14.2. HRMS (ESI): Calcd for C$_{20}$H$_{34}$NO [M+H]: 304.2640; Found: 304.2646.

(ii) Synthesized from tert-butyl decanoate: Following the general procedure A, the title compound was prepared using tert-butyl decanoate (0.50 mmol, 114 mg), 1-(tert-butyl)-4-nitrobenzene (0.75 mmol, 134 mg), manganese (Mn, 5 equiv, 138 mg), iotodtrimethylsilane (TMSI, 2 equiv, 143 μL), Ni(glyme)Cl$_2$ (15 mol %, 16.5 mg), and phen (15 mol %, 13.5 mg) at the reaction temperature of 140 °C. The crude product was purified by preparative TLC using hexanes/EtOAc (8:1) as an eluent to afford the title compound (3a) as pale brown solid (96 mg, 63%). Spectral and analytical data were identical to those reported for the same compound above.

N-(4-Methoxyphenyl)decanamide (3b). Following the general procedure A, the title compound was prepared using methyl decanoate (0.50 mmol, 93 mg) and 1-methoxy-4-nitrobenzene (0.60 mmol, 92 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (3:1) as an eluent to afford the title compound (3b) as pale brown solid (95 mg, 68%). 1H NMR (400 MHz, CDCl$_3$): δ 7.41 (d, $J = 8.8$ Hz, 2 H), 7.15 (s, 1 H), 6.84 (d, $J = 8.7$ Hz, 2 H), 3.78 (s, 3 H), 2.32 (t, $J = 7.6$ Hz, 2 H), 1.71 (qu, $J = 7.3$ Hz, 2 H), 1.39-1.21 (ovrlp, 12 H), 0.88 (t, $J = 6.9$ Hz, 3 H). 13C NMR (100 MHz, CDCl$_3$): δ 171.4, 156.5, 131.2, 121.9, 114.2, 55.6, 37.8, 32.0, 29.6, 29.5, 29.45, 29.42, 25.9, 22.8, 14.2. HRMS (ESI): Calcd for C$_{17}$H$_{26}$NO$_2$ [M+H]: 278.2120; Found: 278.2126.

N-(4-(Methylthio)phenyl)decanamide (3c). Following the general procedure A, the title compound was prepared using methyl decanoate (0.5 mmol, 93 mg) and methyl(4-nitrophenyl)sulfane (0.60 mmol, 102 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (4:1) as an eluent to afford the title compound (3c) as brown solid (98 mg, 67%). 1H NMR (400 MHz, CDCl$_3$): δ
7.45 (d, J = 8.4 Hz, 2 H), 7.23 (d, J = 8.6 Hz, 2 H), 7.12 (s, 1 H), 2.46 (s, 3 H), 2.34 (t, J = 7.6 Hz, 2 H), 1.72 (qu, J = 7.3 Hz, 2 H), 1.38-1.23 (ovrlp, 12 H), 0.88 (d, J = 7.0 Hz, 3 H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 171.4, 135.8, 133.5, 128.2, 120.5, 38.0, 32.0, 29.6, 29.5, 29.4, 25.8, 22.8, 16.9, 14.3. HRMS (ESI): Calcd for C\(_{17}\)H\(_{28}\)NOS [M+H]: 294.1891; Found: 294.1892.

\(\text{N-(3-Bromo-4-methylphenyl)decanamide (3d). Following the general procedure A, the title}
\)

\(\text{compound was prepared using methyl decanoate (1 equiv, 0.50 mmol, 93 mg) and 2-bromo-1-methyl-}
\)

\(\text{4-nitrobenzene (1.5 equiv, 0.75 mmol, 163 mg). The crude product was purified by preparative TLC}
\)

\(\text{using hexanes/CH}_2\text{Cl}_2 (5:1) as an eluent to afford the title compound (3d) as deep brown solid (130}
\)

\(\text{mg, 68\%).} \quad {^1}\text{H NMR (400 MHz, CDCl}_3\text{): } \delta 7.76 (s, 1 H), 7.45 (s, 1 H), 7.34 (d, J = 7.7 Hz, 1 H), 7.13 (d, J = 8.2 Hz, 1 H), 2.36-2.29 (ovrlp, 5 H), 1.68 (qu, J = 7.3 Hz, 2 H), 1.36-1.21 (ovrlp, 12 H), 0.87 (t, J = 7.0 Hz, 3 H).} \quad {^{13}}\text{C NMR (100 MHz, CDCl}_3\text{): } \delta 171.8, 136.9, 133.6, 130.8, 124.8, 123.7, 119.0, 37.8, 32.0, 29.6, 29.5, 29.4, 25.7, 22.8, 22.4, 14.2.} \quad \text{HRMS (ESI): Calcd for C}_{17}\text{H}_{27}\text{BrNO [M+H]: 340.1278; Found: 340.1260.}

\(\text{N-(3-Chloro-4-methoxyphenyl)palmitamide (3e). Following the general procedure A, the title}
\)

\(\text{compound was prepared using hexadecyl palmitate (1 equiv, 0.50 mmol, 240 mg), 2-chloro-1-methoxy-4-nitrobenzene (1.5 equiv, 0.75 mmol, 141 mg), Ni(glyme)Cl}_2 (15 mol \%, 16.5 mg) and phen (15 mol \%, 13.5 mg). The crude product was purified by preparative TLC using hexanes/CH}_2\text{Cl}_2 (3:1)
\)

\(\text{as an eluent to afford the title compound (3e) as brown solid (105 mg, 53\%).} \quad {^1}\text{H NMR (400 MHz, CDCl}_3\text{): } \delta 7.55 (d, J = 2.6 Hz, 1 H), 7.38 (dd, J = 8.8 Hz, J = 2.6 Hz, 1 H), 7.30 (s, 1 H), 6.85 (d, J = 8.8 Hz, 1 H), 3.87 (s, 3 H), 2.32 (t, J = 7.6 Hz, 2 H), 1.70 (qu, J = 7.7 Hz, 2 H), 1.37-1.22 (ovrlp, 24 H), 0.88 (t, J = 6.9 Hz, 3 H).} \quad {^{13}}\text{C NMR (100 MHz, CDCl}_3\text{): } \delta 171.6, 151.9, 131.7, 122.64, 122.56, 119.8, 112.3, 56.5, 37.7, 32.1, 29.84, 29.82, 29.80, 29.76, 29.6, 29.52, 29.50, 29.4, 25.8, 22.8, 14.3.} \quad \text{HRMS (ESI): Calcd for C}_{23}\text{H}_{39}\text{ClNO}_2 [M+H]: 396.2669; Found: 396.2666.}

\(\text{N-(4-(1H-Pyrrol-1-yl)phenyl)decanamide (3f). Following the general procedure A, the title}
\)

\(\text{compound was prepared using methyl decanoate (0.50 mmol, 93 mg) and 1-(4-nitrophenyl)-1H-}
\)
pyrrole (0.60 mmol, 113 mg). The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (5:1) as an eluent to afford the title compound (3f) as brown solid (80 mg, 51%). ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 8.3 Hz, 2 H), 7.38 (s, 1 H), 7.32 (d, J = 7.6 Hz, 2 H), 7.03 (s, 2 H), 6.33 (s, 2 H), 2.36 (t, J = 7.6 Hz, 2 H), 1.73 (qu, J = 2 Hz, 2 H), 1.39-1.26 (ovrlp, 12 H), 0.88 (t, J = 7.1 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 137.1, 135.8, 121.14, 121.07, 119.4, 110.4, 37.9, 32.0, 29.6, 29.5, 29.43, 29.41, 25.8, 22.8, 14.2. HRMS (ESI): Calcd for C₂₀H₂₉N₂O [M+H]: 313.2286; Found: 313.2274.

N-(4-(1H-Pyrazol-1-yl)phenyl)decanamide (3g). Following the general procedure A, the title compound was prepared using methyl decanoate (1 equiv, 0.50 mmol, 93 mg), 1-(4-nitrophenyl)-1H-pyrazole (1.5 equiv, 0.75 mmol, 142 mg), Ni(glyme)Cl₂ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg) under the reaction temperature of 120 °C. The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (4:1) as an eluent to afford the title compound (3g) as pale brown solid (78 mg, 50%). ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, J = 2.4 Hz, 1 H), 7.71 (s, 1 H), 7.65-7.60 (ovrlp, 4 H), 7.22 (s, 1 H), 6.46 (s, 1 H), 2.37 (t, J = 7.6 Hz, 2 H), 1.74 (qu, J = 7.6 Hz, 2 H), 1.43-1.22 (ovrlp, 12 H), 0.88 (t, J = 7.0 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 141.0, 136.6, 136.5, 126.8, 120.7, 120.0, 107.7, 38.0, 32.0, 29.6, 29.5, 29.43, 29.42, 25.7, 22.8, 14.3. HRMS (ESI): Calcd for C₁₉H₂₈N₃O [M+H]: 314.2237; Found: 314.2217.

N-(Quinolin-6-yl)decanamide (3h). Following the general procedure A, the title compound was prepared using methyl decanoate (1 equiv, 0.50 mmol, 93 mg), 6-nitroquinoline (1.5 equiv, 0.75 mmol, 131 mg), Ni(glyme)Cl₂ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg). The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (1:1) as an eluent to afford the title compound (3h) as pale brown solid (105 mg, 70%). ¹H NMR (400 MHz, CDCl₃): δ 8.81 (s, 1 H), 8.70 (s, 1 H), 8.45 (s, 1 H), 8.05 (d, J = 8.4 Hz, 1 H), 7.98 (d, J = 9.0 Hz, 1 H), 7.61 (d, J = 9.1 Hz, 1 H), 7.34 (dd, J = 8.4 Hz, J = 4.3 Hz, 1 H), 2.42 (t, J = 7.6 Hz, 2 H), 1.74 (qu, J = 7.7 Hz, 2 H), 1.36-1.17 (ovrlp, 12 H), 0.86 (t, J = 7.1 Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 172.5, 149.2 145.4, 136.5, 136.1, 126.8, 120.7, 120.0, 107.7, 38.0, 32.0, 29.6, 29.5, 29.43, 29.42, 25.7, 22.8, 14.2. HRMS (ESI): Calcd for C₁₉H₂₇N₂O [M+H]: 299.2128; Found: 299.2118.

\[N-(2\text{-Methylbenzo}[d]\text{thiazol-6-yl})\text{decanamide (3i)}\]. Following the general procedure A, the title compound was prepared using methyl decanoate (1 equiv, 0.50 mmol, 93 mg) and 2-methyl-6-nitrobenzo[d]thiazole (1.5 equiv, 0.75 mmol, 146 mg), Ni(glyme)Cl\(_2\) (15 mol %, 16.5 mg), and phen (15 mol %, 13.5 mg) under the reaction temperature of 120 °C. The crude product was purified by preparative TLC using hexanes/CH\(_2\)Cl\(_2\) (1:1) as an eluent to afford the title compound (3i) as deep brown solid (80 mg, 50%).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 8.43 (s, 1 H), 7.83 (d, \(J = 8.7\) Hz, 1 H), 7.39 (s, 1 H), 7.23 (dd, \(J = 8.7\) Hz, \(J = 2.2\) Hz, 1 H), 2.80 (s, 3 H), 2.38 (t, \(J = 7.6\) Hz, 2 H), 1.74 (qu, \(J = 7.5\) Hz, 2 H), 7.40-1.17 (ovrlp, 12 H), 0.88 (t, \(J = 6.9\) Hz, 3 H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 171.7, 166.6, 150.1, 136.8, 135.1, 122.4, 118.6, 112.5, 38.0, 32.0, 29.6, 29.5, 29.422, 29.415, 25.8, 22.8, 20.2, 14.2. HRMS (ESI): Calcd for C\(_{18}\)H\(_{27}\)N\(_2\)OS [M+H]: 319.1844; Found: 319.1842.

\[N-(2\text{-Phenylbenzo}[d]\text{oxazol-5-yl})\text{decanamide (3j)}\]. Following the general procedure A, the title compound was prepared using methyl decanoate (0.50 mmol, 93 mg) and 5-nitro-2-phenylbenzo[d]oxazole (0.60 mmol, 144 mg). The crude product was purified by preparative TLC using hexanes/CH\(_2\)Cl\(_2\) (1:1) as an eluent to afford the title compound (3j) as deep brown solid (100 mg, 55%).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 8.20 (d, \(J = 6.8\) Hz, 2 H), 7.90 (s, 1 H), 7.77 (s, 1 H), 7.56-7.45 (ovrlp, 5 H), 2.36 (t, \(J = 7.6\) Hz, 2 H), 1.72 (qu, \(J = 7.5\) Hz, 2 H), 1.36-1.24 (ovrlp, 12 H), 0.86 (d, \(J = 7.0\) Hz, 3 H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 171.9, 163.9, 147.6, 142.5, 135.2, 131.7, 129.0, 127.7, 127.1, 118.5, 111.7, 110.5, 37.8, 32.0, 29.6, 29.53, 29.46, 29.4, 25.8, 22.8, 20.2, 14.2. HRMS (ESI): Calcd for C\(_{23}\)H\(_{29}\)N\(_2\)O\(_2\) [M+H]: 365.2229; Found: 365.2227.

\[N-(1\text{-Methyl-1H-indol-5-yl})\text{decanamide (3k)}\]. Following the general procedure A, the title compound was prepared using methyl decanoate (0.50 mmol, 93 mg) and 1-methyl-5-nitro-1H-indole (0.60 mmol, 106 mg). The crude product was purified by preparative TLC using hexanes/CH\(_2\)Cl\(_2\) (3:1) as an eluent to afford the title compound (3k) as pale brown solid (88 mg, 59%).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 7.81 (s, 1 H), 7.28-7.24 (ovrlp, 2 H), 7.21 (s, 1 H), 7.03 (d, \(J = 3.1\) Hz, 1 H), 6.42 (d, \(J = 3.1\) Hz, 1 H), 3.76 (s, 3 H), 2.35 (t, \(J = 7.6\) Hz, 2 H), 1.74 (qu, \(J = 7.6\) Hz, 2 H), 1.39-1.19 (ovrlp, 12 H), 0.88 (t, \(J = 7.0\) Hz, 3 H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 171.5, 134.3, 130.3, 129.7, 128.6, 116.0, 112.9, 109.4, 101.1, 38.0, 33.1, 32.0, 29.62, 29.57, 29.5, 29.4, 26.0, 22.8, 14.3. HRMS (ESI): Calcd for C\(_{19}\)H\(_{29}\)N\(_2\)O [M+H]: 301.2280; Found: 301.2285.
N-(Dibenzo[bd]thiophen-3-yl)decanamide (3l). Following the general procedure A, the title compound was prepared using methyl decanoate (0.50 mmol, 93 mg) and 3-nitrodibenzo[bd]thiophene (0.60 mmol, 149 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (4:1) as an eluent to afford the title compound (3l) as off-white solid (140 mg, 79%). 1H NMR (400 MHz, CDCl$_3$): δ 8.47 (s, 1 H), 8.00 (d, $J = 7.7$ Hz, 1 H), 7.81-7.76 (ovrlp, 2 H), 7.66 (d, $J = 8.5$ Hz, 1 H), 7.42-7.32 (ovrlp, 3 H), 2.37 (t, $J = 7.7$ Hz, 2 H), 1.73 (qu, $J = 7.0$ Hz, 2 H), 1.36-1.19 (ovrlp, 12 H), 0.87 (t, $J = 6.2$ Hz, 3 H).

13C NMR (100 MHz, CDCl$_3$): δ 172.1, 140.2, 136.2, 135.4, 135.2, 134.9, 126.9, 124.4, 122.95, 122.85, 121.9, 119.8, 113.2, 37.9, 32.0, 29.59, 29.55, 29.5, 29.4, 25.8, 22.8, 14.2. HRMS (ESI): Calcd for C$_{22}$H$_{28}$NOS [M+H]: 354.1900; Found: 354.1885.

(E)-3-Phenyl-N-(4-styrylphenyl)propanamide (3m). Following the general procedure A, the title compound was prepared using methyl 3-phenylpropanoate (0.50 mmol, 82 mg) and (E)-1-nitro-4-styrylbenzene (0.60 mmol, 135 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (3:1) as an eluent to afford the title compound (3m) as pale brown solid (125 mg, 76%). 1H NMR (400 MHz, DMSO-d$_6$): δ 10.00 (s, 1 H), 7.62-7.52 (ovrlp, 6 H), 7.36 (t, $J = 7.6$ Hz, 2 H), 7.31-7.23 (ovrlp, 5 H), 7.21-7.12 (ovrlp, 3 H), 2.92 (t, $J = 7.8$ Hz, 2 H), 2.64 (t, $J = 7.6$ Hz, 2 H).

13C NMR (100 MHz, DMSO-d$_6$): δ 170.4, 141.2, 138.8, 137.2, 131.9, 128.7, 128.34, 128.26, 128.04, 127.4, 126.93, 126.90, 126.3, 126.0, 119.1, 38.0, 30.8. HRMS (ESI): Calcd for C$_{23}$H$_{22}$NO [M+H]: 328.1710; Found: 328.1686.

N-(Benzod[1,3]dioxol-5-yl)undec-10-enamide (3n). Following the general procedure A, the title compound was prepared using methyl undec-10-enoate (0.50 mmol, 106 mg) and 5-nitrobenzo[1,3]dioxole (0.60 mmol, 100 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (3:1) as an eluent to afford the title compound (3n) as brown solid (91 mg, 60%). 1H NMR (400 MHz, CDCl$_3$): δ 7.57 (s, 1 H), 7.21 (s, 1 H), 6.79 (d, $J = 8.4$ Hz, 1 H), 6.70 (d, $J = 8.4$ Hz, 1 H), 2.96 (t, $J = 7.7$ Hz, 2 H), 2.45 (t, $J = 7.8$ Hz, 2 H), 2.34-2.24 (ovrlp, 12 H), 0.86 (t, $J = 6.2$ Hz, 3 H).

13C NMR (100 MHz, CDCl$_3$): δ 170.4, 141.2, 138.8, 137.2, 131.9, 128.7, 128.34, 128.26, 128.04, 127.4, 126.93, 126.90, 126.3, 126.0, 119.1, 38.0, 30.8. HRMS (ESI): Calcd for C$_{22}$H$_{28}$NOS [M+H]: 354.1900; Found: 354.1885.
\(= 8.3 \text{ Hz, 1 H)}, 5.92 (2 \text{ H}), 5.85-5.75 (m, 1 \text{ H}), 5.01-4.91 (\text{ovrlp, 2 H}), 2.30 (t, J = 7.6 \text{ Hz, 2 H)}, 2.03 (q, J = 7.2 \text{ Hz, 2 H}), 1.69 (qu, J = 7.6 \text{ Hz, 2 H}), 1.38-1.24 (\text{ovrlp, 10 H}). \)

\(^1\text{H NMR (400 MHz, CDCl}_3\): \(\delta 7.40 (d, J = 8.3 \text{ Hz, 2 H}), 7.34-7.25 (\text{ovrlp, 5 H}), 7.10 (d, J = 8.0 \text{ Hz, 2 H}), 2.52-2.43 (m, 1 \text{ H}), 2.33-2.21 (\text{ovrlp, 4 H}), 2.05 (d, J = 12.6 \text{ Hz, 1 H}), 1.97-1.85 (\text{ovrlp, 2 H}), 1.76-1.34 (\text{ovrlp, 5 H}), 1.29 (s, 9 H). \)

\(^{13}\text{C NMR (100 MHz, CDCl}_3\): \(\delta 173.3, 150.9, 135.5, 134.0, 131.4, 129.6, 125.3, 120.1, 92.4, 80.9, 45.9, 35.9, 34.8, 32.5, 31.3, 30.0, 28.9, 25.2, 21.0. \)

HRMS (ESI): Calcd for C\(_{26}\)H\(_{32}\)NO [M+H]: 374.2484; Found: 374.2487.
N-(4-(tert-Butyl)phenyl)-7-chloroheptanamide (3q). Following the general procedure A, the title compound was prepared using methyl 7-chloroheptanoate (0.50 mmol, 89 mg) and 1-(tert-butyl)-4-nitrobenzene (0.60 mmol, 107 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (5:1) as an eluent to afford the title compound (3q) as a viscous, deep brown oil (99 mg, 67%). 1H NMR (400 MHz, CDCl$_3$): δ 7.51 (s, 1 H), 7.44 (d, J = 8.2 Hz, 2 H), 7.31 (d, J = 8.2 Hz, 2 H), 3.51 (t, J = 6.7 Hz, 2 H), 2.34 (t, J = 7.6 Hz, 2 H), 1.80-1.69 (ovrlp, 4 H), 1.48-1.36 (ovrlp, 4 H), 1.29 (s, 9 H). 13C NMR (100 MHz, CDCl$_3$): δ 171.4, 147.2, 135.5, 125.8, 119.8, 45.1, 37.5, 34.4, 32.5, 31.5, 28.5, 26.8, 25.6. HRMS (ESI): Calcd for C$_{17}$H$_{27}$ClNO [M+H]: 296.1776; Found: 296.1767.

N-(4-(tert-Butyl)phenyl)-5-morpholinopentanamide (3r). Following the general procedure A, the title compound was prepared using methyl 5-morpholinopentanoate (S2, 1 equiv, 0.50 mmol, 101 mg), 1-(tert-butyl)-4-nitrobenzene (1.5 equiv, 0.75 mmol, 134 mg), Ni(glyme)Cl$_2$ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg) under the reaction temperature of 120 °C. The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (1:4) as an eluent to afford the title compound (3r) as a brown solid (109 mg, 68%). 1H NMR (400 MHz, CDCl$_3$): δ 7.77 (s, 1 H), 7.43 (d, J = 8.3 Hz, 2 H), 7.31 (d, J = 8.2 Hz, 2 H), 3.69 (t, J = 4.8 Hz, 4 H), 2.41 (t, J = 4.5 Hz, 4 H), 2.38-2.33 (ovrlp, 4 H), 1.74 (qu, J = 7.6 Hz, 2 H), 1.55 (qu, J = 7.7 Hz, 2 H), 1.29 (s, 9 H). 13C NMR (100 MHz, CDCl$_3$): δ 171.3, 147.2, 135.5, 125.8, 119.8, 67.0, 58.6, 53.8, 37.3, 34.4, 31.4, 26.1, 23.6. HRMS (ESI): Calcd for C$_{19}$H$_{31}$N$_2$O$_2$ [M+H]: 319.2386; Found: 319.2386.

N-(4-(tert-Butyl)phenyl)-3-(2-hydroxyphenyl)propanamide (3s). Following the general procedure A, the title compound was prepared using methyl 3-(2-hydroxyphenyl)propanoate (1 equiv, 0.50 mmol, 90 mg), 1-(tert-butyl)-4-nitrobenzene (1.3 equiv, 0.65 mmol, 116 mg), Ni(glyme)Cl$_2$ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg) under the temperature of 140 °C. The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (1:1) as an eluent to afford the title compound (3s) as pale brown solid (62 mg, 42%). 1H NMR (400 MHz, CDCl$_3$): δ 8.43 (br s, 1 H), 7.35 (d, J = 8.7 Hz, 2 H), 7.32-7.28 (ovrlp, 3 H), 7.13-7.07 (ovrlp, 2 H), 6.90 (d, J = 7.7 Hz, 1 H), 6.84 (t, J = 7.4 Hz, 1 H), 2.98 (t, J = 6.2 Hz, 2 H), 2.78 (t, J = 6.2 Hz, 2 H), 1.28 (s, 9 H). 13C NMR (100 MHz, CDCl$_3$): δ 172.6, 154.9, 148.0, 134.5, 130.7, 128.3, 127.8, 126.0, 120.7, 120.3, 118.0, 38.3, 34.5, 31.5, 24.7. HRMS (ESI): Calcd for C$_{19}$H$_{24}$NO$_2$ [M+H]: 298.1802; Found: 298.1806.
5-(4-Chloro-3,5-dimethylphenoxy)-N-(p-tolyl)pentanamide (3t). Following the general procedure A, the title compound was prepared methyl 5-(4-chloro-3,5-dimethylphenoxy)pentanoate (S1, 0.50 mmol, 135 mg) and 4-nitrotoluene (0.60 mmol, 82 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (5:1) as an eluent to afford the title compound (3t) as pale brown solid (108 mg, 62%). 1H NMR (400 MHz, CDCl$_3$): δ 7.70 (s, 1 H), 7.37 (d, $J = 8.0$ Hz, 2 H), 7.07 (d, $J = 8.0$ Hz, 2 H), 6.59 (s, 2 H), 3.89 (t, $J = 5.7$ Hz, 2 H), 2.38 (t, $J = 6.8$ Hz, 2 H), 2.31 (s, 6 H), 2.28 (s, 3 H), 1.89-1.77 (ovrlp, 4 H). 13C NMR (100 MHz, CDCl$_3$): δ 171.2, 156.8, 137.1, 135.5, 133.9, 129.5, 126.2, 120.2, 114.5, 67.7, 37.1, 28.7, 22.5, 21.0, 20.9. HRMS (ESI): Calcd for C$_{20}$H$_{25}$ClNO$_2$ [M+H]: 346.1579; Found: 346.1571.

5-(3-Cyanophenoxy)-N-(p-tolyl)pentanamide (3u). Following the general procedure A, the title compound was prepared using methyl 5-(3-cyanophenoxy)pentanoate (1 equiv, 0.50 mmol, 117 mg), 4-nitrotoluene (1.5 equiv, 0.75 mmol, 103 mg), Ni(glyme)Cl$_2$ (15 mol %, 16.6 mg), and phen (15 mol %, 13.6 mg) under the reaction temperature of 140 °C. The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (1:3) as an eluent to afford the title compound (3u) as deep brown solid (63 mg, 41%). 1H NMR (400 MHz, CDCl$_3$): δ 7.38 (d, $J = 8.3$ Hz, 2 H), 7.34 (d, $J = 9.0$ Hz, 1 H), 7.22 (d, $J = 7.6$ Hz, 2 H), 7.15-7.06 (ovrlp, 4 H), 4.00 (t, $J = 5.2$ Hz, 2 H), 2.43 (t, $J = 6.4$ Hz, 2 H), 2.31 (s, 3 H), 1.96-1.83 (ovrlp, 4 H). 13C NMR (100 MHz, CDCl$_3$): δ 170.7, 159.1, 135.4, 134.1, 130.5, 129.6, 124.6, 120.0, 119.9, 118.9, 117.5, 113.3, 68.1, 37.2, 28.7, 22.3, 21.0. HRMS (ESI): Calcd for C$_{19}$H$_{21}$N$_2$O$_2$ [M+H]: 309.1608; Found: 309.1598.

5-Oxo-5-phenyl-N-(p-tolyl)pentanamide (3v). Following the general procedure A, the title compound was prepared using methyl 5-oxo-5-phenylpentanoate (1 equiv, 0.50 mmol, 103 mg), 4-nitrotoluene (1.5 equiv, 0.75 mmol, 103 mg), Ni(glyme)Cl$_2$ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg) under the reaction temperature of 120 °C. The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (3:1) as an eluent to afford the title compound (3v) as brown solid (115 mg, 82%). 1H NMR (400 MHz, CDCl$_3$): δ 7.94 (d, $J = 7.1$ Hz, 2 H), 7.82 (s, 1 H), 7.54 (t, $J = 7.4$ Hz, 1 H),
7.45-7.39 (ovrlp, 4 H), 7.08 (d, J = 8.0 Hz, 2 H), 3.08 (t, J = 6.8 Hz, 2 H), 2.44 (t, J = 7.1 Hz, 2 H), 2.28 (s, 3 H), 2.14 (qu, J = 7.2 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ 200.3, 171.0, 136.8, 135.5, 133.8, 133.3, 129.5, 128.7, 128.2, 120.1, 37.5, 26.5, 20.9, 20.3. HRMS (ESI): Calcd for C18H20NO2 [M+H]: 282.1497; Found: 282.1488.

Methyl 4-(2-Oxo-2-((p-tolylamino)ethyl)benzoate (3w). Following the general procedure A, the title compound was prepared using methyl 4-(2-methoxy-2-oxoethyl)benzoate (0.50 mmol, 104 mg) and 4-nitrotoluene (0.60 mmol, 82 mg). The crude product was purified by preparative TLC using hexanes/CH2Cl2 (3:1) as an eluent to afford the title compound (3w) as pale-brown solid (112 mg, 79%). 1H NMR (400 MHz, CDCl3): δ 8.01 (d, J = 8.2 Hz, 2 H), 7.47 (s, 1 H), 7.37 (d, J = 7.9 Hz, 2 H), 7.30 (d, J = 8.2 Hz, 2 H), 7.06 (d, J = 8.0 Hz, 2 H), 3.91 (s, 3 H), 3.71 (s, 2 H), 2.28 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ 168.3, 166.9, 140.0, 135.1, 134.4, 130.3, 129.4, 120.2, 52.3, 44.6, 21.0. HRMS (ESI): Calcd for C17H18NO3 [M+H]: 284.1289; Found: 284.1272.

N-(4-(tert-Butyl)phenyl)-6-morpholino-6-oxohexanamide (3x). Following the general procedure A, the title compound was prepared using methyl 6-(morpholino-6-oxohexanoate (S3, 1 equiv, 0.50 mmol, 115 mg), 1-(tert-butyl)-4-nitrobenzene (1.5 equiv, 0.75 mmol, 135 mg), Ni(glyme)Cl2 (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg) under the temperature of 120 °C. The crude product was purified by preparative TLC using hexanes/EtOAc (2:1) as an eluent to afford the title compound (3x) as viscous, deep brown oil (89 mg, 51%). 1H NMR (400 MHz, CDCl3): δ 8.46 (s, 1 H), 7.50 (d, J = 8.7 Hz, 2 H), 7.30 (d, J = 8.7 Hz, 2 H), 3.66-3.60 (ovrlp, 6 H), 3.44 (t, J = 4.8 Hz, 2 H), 2.42-2.35 (ovrlp, 4 H), 1.77-1.67 (m, 4 H), 1.29 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ 171.6, 171.3, 146.9, 135.8, 125.7, 119.8, 66.9, 66.6, 46.0, 42.0, 37.1, 34.4, 32.6, 31.4, 25.2, 24.4. HRMS (ESI): Calcd for C20H31N2O3 [M+H]: 347.2335; Found: 347.2330.

N1-(4-(tert-Butyl)phenyl)-N6-cyclohexyladipamide (3y). Following the general procedure A, the title compound was prepared using methyl 6-(cyclohexylamino)-6-oxohexanate (S4, 1 equiv, 0.50 mmol,
121 mg) and 1-(tert-butyl)-4-nitrobenzene (1.2 equiv, 0.60 mmol, 108 mg), Ni(glyme)Cl₂ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg). The crude product was purified by recrystallization using CH₂Cl₂/hexanes as solvents to afford the title compound (3y) as white solid (138 mg, 77%). \(^1H \) NMR (400 MHz, CDCl₃): \(\delta \) 8.21 (s, 1 H), 7.49 (d, \(J = 8.5 \) Hz, 2 H), 7.31 (d, \(J = 8.5 \) Hz, 2 H), 5.73 (d, \(J = 8.2 \) Hz, 1 H), 3.79-3.71 (m, 1 H), 2.39 (t, \(J = 5.5 \) Hz, 2 H), 2.21 (d, \(J = 5.9 \) Hz, 2 H), 1.89 (d, \(J = 11.9 \) Hz, 2 H), 1.79-1.63 (ovrlp, 6 H), 1.62-1.57 (m, 1 H), 1.37-1.25 (ovrlp, 11 H), 1.21-1.07 (ovlp, 3 H).

\(^{13}C \) NMR (100 MHz, CDCl₃): \(\delta \) 172.1, 171.3, 147.1, 135.7, 125.8, 119.8, 48.4, 37.2, 36.5, 34.5, 33.3, 31.5, 25.7, 25.2, 25.0, 24.9. HRMS (ESI): Calcd for C\(_{22}\)H\(_{35}\)N\(_2\)O\(_2\) [M+H]: 359.2707; Found: 359.2680.

N\(^1\)-((4-(tert-Butyl)phenyl)-N\(^6\)-((1-(4-fluorophenyl)-1H-indazol-5-yl)adipamide (3z). Following the general procedure A, the title compound was prepared using methyl 6-((1-(4-fluorophenyl)-1H-indazol-5-yl)amino)-6-oxohexanoate (S5, 1 equiv, 0.50 mmol, 185 mg) and 1-(tert-butyl)-4-nitrobenzene (1.5 equiv, 0.75 mmol, 134 mg), Ni(glyme)Cl₂ (15 mol %, 16.5 mg), and phen (15 mol %, 13.5 mg) under the reaction temperature of 120 °C. The crude product was purified by recrystallization using CH₂Cl₂/hexanes as solvents to afford the title compound (3z) as off-white solid (112 mg, 46%). \(^1H \) NMR (400 MHz, DMSO-\(d_6 \)): \(\delta \) 10.04 (s, 1 H), 9.81 (s, 1 H), 8.31 (s, 1 H), 8.28 (d, \(J = 1.4 \) Hz, 1 H), 7.81-7.74 (ovrlp, 3 H), 7.56 (dd, \(J = 9.1 \) Hz, \(J = 1.8 \) Hz, 1 H), 7.50 (d, \(J = 8.7 \) Hz, 2 H), 7.41 (dd, \(J_{HH} = 8.8 \) Hz, \(J_{HF} = 8.8 \) Hz, 2 H), 7.28 (d, \(J = 8.7 \) Hz, 2 H), 2.40-2.32 (ovrlp, 4 H), 1.70-1.62 (ovrlp, 4 H), 1.23 (s, 9 H). \(^{13}C \) NMR (100 MHz, DMSO-\(d_6 \)): \(\delta \) 171.1, 170.9, 160.2 (d, \(J_{CF} = 242.0 \) Hz), 145.2, 136.7, 136.2 (d, \(J_{CF} = 2.8 \) Hz), 135.6, 134.9, 133.7, 125.2, 125.1, 123.8 (d, \(J_{CF} = 8.5 \) Hz), 121.3, 118.9, 116.4 (d, \(J_{CF} = 22.8 \) Hz), 110.4, 110.1, 36.32, 36.27, 33.9, 31.2, 25.0. HRMS (ESI): Calcd for C\(_{29}\)H\(_{32}\)FN\(_4\)O\(_2\) [M+H]: 487.2504; Found: 487.2509.

N-(2,5-Dimethoxyphenyl)cyclobutanecarboxamide (4a). Following the general procedure A, the title compound was prepared using ethyl cyclobutanecarboxylate (1 equiv, 0.50 mmol, 64 mg) and 1,4-dimethoxy-2-nitrobenzene (1.5 equiv, 0.75 mmol, 137 mg), Ni(glyme)Cl₂ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg) under the reaction temperature of 120 °C. The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (1:1) as an eluent to afford the title compound (4a) as viscous brown oil (78 mg, 66%). \(^1H \) NMR (400 MHz, CDCl₃): \(\delta \) 8.18 (d, \(J = 3.1 \) Hz, 1 H), 7.71 (s,
1 H), 6.77 (d, J = 8.9 Hz, 1 H), 6.55 (dd, J = 8.8 Hz, J = 3.0 Hz, 1 H), 3.83 (s, 3 H), 3.78 (s, 3 H), 3.20 (qu, J = 8.5 Hz, 1 H), 2.44-2.35 (m, 2 H), 2.28-2.20 (m, 2 H), 2.04-1.91 (m, 2 H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 173.3, 154.0, 142.0, 128.5, 110.8, 108.6, 105.7, 56.3, 55.9, 41.3, 25.5, 18.2.

HRMS (ESI): Calcd for C\(_{13}\)H\(_{18}\)NO\(_3\) [M+H]: 236.1287; Found: 236.1287.

\(N\)-(Naphthalen-1-yl)cyclopentanecarboxamide (4b). Following the general procedure A, the title compound was prepared using methyl cyclopentanecarboxylate (1 equiv, 0.50 mmol, 64 mg) and 1-nitronaphthalene (1.5 equiv, 0.75 mmol, 130 mg), Ni(glyme)Cl\(_2\) (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg) under the reaction temperature of 120 °C. The crude product was purified by preparative TLC using hexanes/CH\(_2\)Cl\(_2\) (5:1) as an eluent to afford the title compound (4b) as deep brown solid (71 mg, 59%).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 7.96 (d, J = 7.5 Hz, 1 H), 7.87 (d, J = 7.7 Hz, 1 H), 7.82 (d, J = 8.0 Hz, 1 H), 7.69 (d, J = 8.2 Hz, 1 H), 7.53-7.45 (ovrlp, 4 H), 2.88 (qu, J = 8.2 Hz, 1 H), 2.10-2.01 (ovrlp, 4 H), 1.98-1.97 (m, 2 H), 1.74-1.63 (m, 2 H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 175.0, 134.3, 132.6, 129.0, 127.2, 126.4, 126.0, 125.9, 125.7, 120.9, 120.5, 47.0, 30.8, 26.2.

HRMS (ESI): Calcd for C\(_{16}\)H\(_{18}\)NO\(_3\) [M+H]: 240.1400; Found: 240.1376.

tert-Butyl 3-(4-(tert-buty1)phenyl)carbamoyl)pyrrolidine-1-carboxylate (4c). Following the general procedure A, the title compound was prepared using 1-(tert-butyl) 3-methyl pyrrolidine-1,3-dicarboxylate (1 equiv, 0.50 mmol, 115 mg) and 1-(tert-butyl)-4-nitrobenzene (1.3 equiv, 0.65 mmol, 116 mg) under the reaction temperature of 120 °C. The crude product was purified by preparative TLC using hexanes/CH\(_2\)Cl\(_2\) (1:3) as an eluent to afford the title compound (4c) as viscous deep brown oil (84 mg, 48%).

\(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 8.21 (s, 1 H), 7.45 (d, J = 8.4 Hz, 2 H), 7.30 (d, J = 8.2 Hz, 2 H), 3.70-3.51 (ovrlp, 3 H), 3.35-3.28 (m, 1 H), 3.01 (br s, 1 H), 2.29-1.99 (ovrlp, 2 H), 1.46 (s, 9 H), 1.28 (s, 9 H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 170.8, 154.5, 147.4, 135.4, 125.8, 119.9, 119.8, 79.7, 48.9, 45.60(44.65), 34.4, 31.4, 29.5(29.2), 28.6.

HRMS (ESI): Calcd for C\(_{20}\)H\(_{31}\)N\(_2\)O\(_3\) [M+H]: 369.2154; Found: 369.2156.
N-(9H-Fluoren-2-yl)cyclohexanecarboxamide (4d). Following the general procedure A, the title compound was prepared using methyl cyclohexanecarboxylate (1 equiv, 0.50 mmol, 71 mg) and 2-nitro-9H-fluorene (1.3 equiv, 0.65 mmol, 137 mg) under the temperature of 120 °C. The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (5:1) as an eluent to afford the title compound (4d) as pale brown solid (90 mg, 62%). **¹H NMR** (400 MHz, CDCl₃): δ 7.94 (s, 1 H), 7.72-7.68 (ovrlp, 2 H), 7.51 (d, J = 7.4 Hz, 1 H), 7.37-7.33 (ovrlp, 2 H), 7.28-7.25 (ovrlp, 2 H), 3.88 (s, 2 H), 2.28-2.21 (m, 1 H), 1.99 (d, J = 13.0 Hz, 2 H), 1.85 (d, J = 12.0 Hz, 2 H), 1.73-1.52 (ovrlp, 3 H), 1.35-1.28 (ovrlp, 3 H). **¹³C NMR** (100 MHz, CDCl₃): δ 174.4, 144.5, 143.3, 141.5, 138.0, 137.1, 126.9, 126.4, 125.1, 120.2, 119.6, 118.5, 116.9, 46.8, 37.2, 29.9, 25.8. **HRMS** (ESI): Calcd for C₂₀H₂₂NO [M+H]: 292.1701; Found: 292.1702.

![N-(9H-Fluoren-2-yl)cyclohexanecarboxamide (4d)](image)

N-(3-Fluoro-4-methylphenyl)tetrahydro-2H-pyran-4-carboxamide (4e). Following the general procedure A, the title compound was prepared using methyl tetrahydro-2H-pyran-4-carboxylate (1 equiv, 0.50 mmol, 72 mg) and 2-fluoro-1-methyl-4-nitrobenzene (1.3 equiv, 0.65 mmol, 101 mg) under the reaction temperature of 120 °C. The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (3:1) as an eluent to afford the title compound (4e) as brown solid (59 mg, 50%). **¹H NMR** (400 MHz, CDCl₃): δ 7.67 (s, 1 H), 7.40 (d, J = 11.5 Hz, 1 H), 7.10-7.06 (ovrlp, 2 H), 4.04 (d, J = 8.2 Hz, 2 H), 3.41 (t, J = 11.5 Hz, 2 H), 2.53-2.44 (m, 1 H), 2.21 (s, 3 H), 1.98-1.76 (ovrlp, 4 H). **¹³C NMR** (100 MHz, CDCl₃): δ 172.9, 161.1 (d, J_CF = 242.2 Hz), 137.0 (d, J_CF = 10.6 Hz), 131.4 (d, J_CF = 8.5 Hz), 120.7 (d, J_CF = 17.5 Hz), 115.2 (d, J_CF = 2.8 Hz), 107.5 (d, J_CF = 26.9 Hz), 67.2, 43.2, 29.3, 14.2, 14.1. **HRMS** (ESI): Calcd for C₁₃H₁₆FNO₂ [M+H]: 238.1251; Found: 238.1230.

![N-(3-Fluoro-4-methylphenyl)tetrahydro-2H-pyran-4-carboxamide (4e)](image)

N-[[1,1'-Biphenyl]-3-yl)-1-methylcyclopropane-1-carboxamide (4f). Following the general procedure A, the title compound was prepared using ethyl 1-methylcyclopropane-1-carboxylate (1 equiv, 0.35 mmol, 45 mg), 3-nitro-1,1'-biphenyl (1.3 equiv, 0.455 mmol, 91 mg), Ni(glyme)Cl₂ (10 mol %, 7.7 mg), and phen (10 mol %, 6.3 mg), Zn (4 equiv, 1.4 mmol, 92 mg), TMSCl (2 equiv, 0.70 mmol, 89 µL), and NMP (0.70 mL) at 120 °C. The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (5:1) as an eluent to afford the title compound (4f) as pale brown solid (61 mg, 69%). **¹H NMR** (400 MHz, CDCl₃): δ 7.79 (t, J = 1.9 Hz, 1 H), 7.60 (d, J = 1.6 Hz, 1 H), 7.58 (s, 1 H), 7.53 (s, 1 H), 7.48 (dt, J = 7.8 Hz, J = 1.4 Hz, 1 H), 7.44-7.38 (ovrlp, 3 H), 7.36-7.31 (ovrlp, 2 H), 1.49 (s, 3 H), 1.33 (q, J = 2.8 Hz, 2 H), 0.69 (q, J = 2.8 Hz, 2 H). **¹³C NMR** (100 MHz, CDCl₃): δ 173.4, 142.2, 140.8, 138.6, 129.4, 128.8, 127.6, 127.3, 123.1, 118.9, 20.0, 16.8. **HRMS** (ESI): Calcd for C₁₇H₁₉NO [M+H]: 252.1390; Found: 252.1375.
Following the general procedure A, the title compound was prepared using ethyl pivalate (0.50 mmol, 1 equiv, 65 mg), 1-(tert-butyl)-4-nitrobenzene (0.75 mmol, 1.5 equiv, 134 mg), manganese (Mn, 5 equiv, 138 mg), iodotrimethylsilane (TMSI, 2 equiv, 143 μL), Ni(glyme)Cl₂ (15 mol %, 16.5 mg), and phen (15 mol %, 13.5 mg) at the reaction temperature of 140 °C. The crude product was purified by preparative TLC using hexanes/EtOAc (8:1) as an eluent to afford the title compound (4g) as pale brown solid (73 mg, 62%). ^1H NMR (400 MHz, CD₂Cl₂): 7.43 (d, J = 8.2 Hz, 2 H), 7.36-7.30 (ovrlp, 3 H), 1.30 (s, 9 H), 1.28 (s, 9 H). ^13C NMR (100 MHz, CD₂Cl₂): 176.7, 147.5, 136.2, 126.1, 120.3, 39.8, 34.7, 31.5, 27.8.

Following the general procedure A, the title compound was prepared using ethyl adamantane-1-carboxylate (0.50 mmol, 1 equiv, 104 mg), 1-(tert-butyl)-4-nitrobenzene (0.75 mmol, 1.5 equiv, 134 mg), manganese (Mn, 5 equiv, 138 mg), iodotrimethylsilane (TMSI, 2 equiv, 143 μL), Ni(glyme)Cl₂ (15 mol %, 16.5 mg), and phen (15 mol %, 13.5 mg) at the reaction temperature of 140 °C. The crude product was purified by preparative TLC using hexanes/EtOAc (8:1) as an eluent to afford the title compound (4h) as pale brown solid (136 mg, 87%). ^1H NMR (400 MHz, CD₂Cl₂): 7.46 (d, J = 8.6 Hz, 2 H), 7.38 (s, 1 H), 7.34 (d, J = 8.6 Hz, 2 H), 2.09-2.05 (m, 3 H), 1.96-1.93 (m, 6 H), 1.80-1.72 (m, 6 H), 1.31 (s, 9 H). ^13C NMR (100 MHz, CD₂Cl₂): 176.2, 147.4, 136.2, 126.0, 120.3, 41.8, 39.7, 36.9, 34.6, 31.5, 28.8. HRMS (ESI): Calcd for C₂₁H₃₀NO [M+H]: 312.2327; Found: 312.2327.

Following the general procedure A, the title compound was prepared using isopropyl tetradecanoate (0.50 mmol, 135 mg), 1-(tert-butyl)-4-nitrobenzene (0.75 mmol, 134 mg), manganese (Mn, 5 equiv, 138 mg), iodotrimethylsilane (TMSI, 2 equiv, 143 μL), Ni(glyme)Cl₂ (15 mol %, 16.5 mg), and phen (15 mol %, 13.5 mg) at the reaction temperature of 140 °C. The crude product was purified by preparative TLC using hexanes/EtOAc (8:1) as an eluent to afford the title compound (4i) as pale brown solid (154 mg, 86%). ^1H NMR (400 MHz, CD₂Cl₂): 8.14 (s, 1 H), 7.49 (d, J = 7.6 Hz, 2 H), 7.32 (d, J = 7.6 Hz, 2 H), 2.35 (t, J = 6.4 Hz, 2 H), 1.71 (d, J = 6.6 Hz, 2 H), 1.37-1.25 (ovrlp, 29 H), 0.92 (d, J = 6.4 Hz, 3 H). ^13C NMR (100 MHz, CD₂Cl₂): 172.3, 147.3, 136.3, 126.0, 120.3, 38.0, 34.7, 32.4, 31.6, 30.20, 30.18, 30.1, 30.0, 29.9, 29.8, 26.3, 23.2, 14.4. HRMS (ESI): Calcd for C₂₄H₄₂NO [M+H]: 360.3262; Found: 360.3266.
N-(4-((4-Methoxyphenyl)amino)phenyl)benzamide (5a). Following the general procedure B, the title compound was prepared using methyl benzoate (1 equiv, 0.50 mmol, 68 mg) and 4-methoxy-N-(4-nitrophenyl)aniline (1.2 equiv, 0.60 mmol, 147 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (3:1) as an eluent to afford the title compound (5a) as deep purple solid (105 mg, 66%). 1H NMR (400 MHz, CDCl$_3$): δ 7.86 (d, $J = 7.4$ Hz, 2 H), 7.71 (s, 1 H), 7.55-7.44 (ovrlp, 5 H), 7.05 (d, $J = 8.4$ Hz, 2 H), 6.93 (d, $J = 8.4$ Hz, 2 H), 6.86 (d, $J = 8.3$ Hz, 2 H), 5.49 (s, 1 H), 3.80 (s, 3 H). 13C NMR (100 MHz, CDCl$_3$): δ 165.5, 155.2, 142.1, 136.0, 135.1, 131.6, 130.2, 128.7, 126.9, 122.1, 121.7, 116.5, 114.7, 55.6. HRMS (ESI): Calcd for C$_{20}$H$_{19}$N$_2$O$_2$ [M+H]: 319.1447; Found: 319.1444.

N-(3-Methoxy-4-methylphenyl)benzamide (5b).

(i) **Synthesized from benzyl benzoate:** Following the general procedure B, the title compound was prepared using benzyl benzoate (0.50 mmol, 106 mg) and 2-methoxy-1-methyl-4-nitrobenzene (0.60 mmol, 109 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (3:1) as an eluent to afford the title compound (5b) as deep-brown solid (105 mg, 87%). 1H NMR (400 MHz, CDCl$_3$): δ 8.22 (s, 1 H), 7.83 (d, $J = 7.6$ Hz, 2 H), 7.50-7.44 (ovrlp, 2 H), 6.93 (d, $J = 8.4$ Hz, 2 H), 6.86 (d, $J = 8.3$ Hz, 2 H), 5.49 (s, 1 H), 3.80 (s, 3 H). 13C NMR (100 MHz, CDCl$_3$): δ 165.5, 155.2, 142.1, 136.0, 135.1, 131.6, 130.2, 128.7, 126.9, 122.1, 121.7, 116.5, 114.7, 55.6. HRMS (ESI): Calcd for C$_{15}$H$_{16}$NO$_2$ [M+H]: 242.1181; Found: 242.1185.

(ii) **Synthesized from phenyl benzoate:** Following the general procedure B, the title compound was prepared using phenyl benzoate (0.50 mmol, 99 mg) and 2-methoxy-1-methyl-4-nitrobenzene (0.60 mmol, 109 mg). The crude product was purified by preparative TLC using hexanes/EtOAc (6:1) as an eluent to afford the title compound (5b) as deep-brown solid (91 mg, 76%). Spectral and analytical data were identical to those reported for the same compound above.

(iii) **Synthesized from 2-naphthyl benzoate:** Following the general procedure B, the title compound was prepared using 2-naphthyl benzoate (0.50 mmol, 124 mg) and 2-methoxy-1-methyl-4-nitrobenzene (0.60 mmol, 109 mg). The crude product was purified by preparative TLC using hexanes/EtOAc (6:1) as an eluent to afford the title compound (5b) as deep-brown solid (89 mg, 74%). Spectral and analytical data were identical to those reported for the same compound above.
4-(Dimethylamino)-N-(p-tolyl)benzamide (5c). Following the general procedure B, the title compound was prepared using ethyl 4-(dimethylamino)benzoate (1 equiv, 0.50 mmol, 97 mg), 4-nitrotoluene (1.5 equiv, 0.75 mmol, 103 mg), Ni(glyme)Cl$_2$ (15 mol %, 16.5 mg), and phen (15 mol %, 13.5 mg). The crude product was purified by preparative TLC using hexanes/EtOAc (4:1) as an eluent to afford the title compound (5c) as deep purple solid (64 mg, 50%). 1H NMR (400 MHz, CDCl$_3$): δ 7.86 (d, J = 7.4 Hz, 2 H), 7.71 (s, 1 H), 7.55-7.44 (ovrlp, 5 H), 7.05 (d, J = 8.4 Hz, 2 H), 6.93 (d, J = 8.4 Hz, 2 H), 6.86 (d, J = 8.3 Hz, 2 H), 5.49 (s, 1 H), 3.80 (s, 3 H). 13C NMR (100 MHz, CDCl$_3$): δ 165.5, 155.2, 142.1, 136.0, 135.1, 131.6, 130.2, 128.7, 126.9, 122.1, 121.7, 116.5, 114.7, 55.6. HRMS (ESI): Calcd for C$_{20}$H$_{19}$N$_2$O$_2$ [M+H]: 319.1447; Found: 319.1444.

4-Amino-N-(4-(tert-butyl)phenyl)benzamide (5d). Following the general procedure B, the title compound was prepared using methyl 4-aminobenzoate (1 equiv, 0.50 mmol, 76 mg), 1-(tert-butylmethyl)-4-nitrobenzene (1.3 equiv, 0.65 mmol, 117 mg), Ni(glyme)Cl$_2$ (15 mol %, 16.5 mg), and phen (15 mol %, 13.5 mg). The crude product was purified by preparative TLC using hexanes/EtOAc (1:1) as an eluent to afford the title compound (5d) as deep-brown solid (70 mg, 52%). 1H NMR (400 MHz, CDCl$_3$): δ 7.76 (s, 1 H), 7.69 (d, J = 8.2 Hz, 2 H), 7.53 (d, J = 8.3 Hz, 2 H), 7.35 (d, J = 8.2 Hz, 2 H), 6.67 (d, J = 8.1 Hz, 2 H), 4.20 (br s, 2 H), 1.31 (s, 9 H). 13C NMR (100 MHz, CDCl$_3$): δ 165.6, 150.0, 147.2, 135.8, 129.0, 125.9, 124.5, 120.1, 114.3, 34.5, 31.5. HRMS (ESI): Calcd for C$_{17}$H$_{21}$N$_2$O [M+H]: 269.1654; Found: 269.1660.

N-(2,3-Dihydro-1H-inden-4-yl)-4-methoxybenzamide (5e). Following the general procedure B, the title compound was prepared using methyl 4-methoxybenzoate (0.50 mmol, 83 mg) and 4-nitro-2,3-dihydro-1H-indene (0.65 mmol, 106 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (3:1) as an eluent to afford the title compound (5e) as pale brown solid (106 mg, 79%). 1H NMR (400 MHz, CDCl$_3$): δ 7.85-7.81 (ovrlp, 3 H), 7.64 (s, 1 H), 7.18 (t, J = 7.6 Hz, 1 H), 7.04 (d, J = 7.2 Hz, 1 H), 6.96 (d, J = 8.4 Hz, 2 H), 3.85 (s, 3 H), 2.96 (t, J = 7.2 Hz, 2 H), 2.87 (t, J =
7.2 Hz, 2 H), 2.12 (qu, J = Hz, 2 H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 165.1, 162.5, 145.4, 134.4, 134.3, 129.0, 127.4, 127.3, 120.9, 119.0, 114.1, 55.6, 33.3, 30.2, 24.9. HRMS (ESI): Calcd for C\(_{17}\)H\(_{18}\)NO\(_2\) [M+H]: 268.1338; Found: 268.1340.

4-(tert-Butyl)-N-(3-(methylthio)phenyl)benzamide (5f). Following the general procedure B, the title compound was prepared using methyl 4-(tert-butyl)benzoate (1 equiv, 0.50 mmol, 96 mg) and methyl(3-nitrophenyl)sulfane (1.2 equiv, 0.60 mmol, 102 mg). The crude product was purified by preparative TLC using hexanes/CH\(_2\)Cl\(_2\) (4:1) as an eluent to afford the title compound (5f) as brown solid (124 mg, 83%). \(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 8.41 (s, 1 H), 7.77 (d, J = 8.2 Hz, 2 H), 7.66 (t, J = 2.0 Hz, 1 H), 7.38-7.36 (ovrlp, 3 H), 7.17 (t, J = 8.0 Hz, 1 H), 6.97 (d, J = 7.5 Hz, 1 H), 2.40 (s, 3 H), 1.30 (s, 9 H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 166.1, 155.4, 139.5, 138.8, 131.8, 129.2, 127.1, 125.6, 122.4, 118.0, 117.1, 35.0, 31.2, 15.6. HRMS (ESI): Calcd for C\(_{18}\)H\(_{22}\)NOS [M+H]: 300.1422; Found: 300.1425.

4-(tert-Butyl)-N-(3-cyano-4-methylphenyl)benzamide (5g). Following the general procedure B, the title compound was prepared using methyl 4-(tert-butyl)benzoate (1 equiv, 0.50 mmol, 96 mg), 2-methyl-5-nitrobenzonitirile (1.5 equiv, 0.75 mmol, 122 mg), Ni(glyme)Cl\(_2\) (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg). The crude product was purified by preparative TLC using hexanes/CH\(_2\)Cl\(_2\) (1:1) as an eluent to afford the title compound (5g) as pale-brown solid (88 mg, 60%). \(^1\)H NMR (400 MHz, CDCl\(_3\)): δ 8.62 (s, 1 H), 7.95 (d, J = 2.3 Hz, 1 H), 7.80 (d, J = 8.5 Hz, 2 H), 7.75 (dd, J = 8.4 Hz, J = 2.3 Hz, 1 H), 7.41 (d, J = 8.5 Hz, 2 H), 7.21 (d, J = 8.4 Hz, 1 H), 2.46 (s, 3 H), 1.31 (s, 9 H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): δ 166.3, 155.8, 137.5, 136.7, 131.3, 130.8, 127.2, 125.7, 125.1, 124.0, 118.0, 112.9, 35.0, 31.2, 19.9. HRMS (ESI): Calcd for C\(_{19}\)H\(_{21}\)N\(_2\)O [M+H]: 293.1654; Found: 293.1657.

4-(tert-Butyl)-N-(4-(methylsulfonyl)phenyl)benzamide (5h). Following the general procedure B, the
title compound was prepared using methyl 4-(tert-butyl)benzoate (1 equiv, 0.50 mmol, 96 mg) and 1-(methylsulfonyl)-4-nitrobenzene (1.3 equiv, 0.65 mmol, 131 mg), Ni(glyme)Cl$_2$ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (1:1) as an eluent to afford the title compound (5h) as off-white solid (102 mg, 62%).

1H NMR (400 MHz, CDCl$_3$): δ 8.60 (s, 1 H), 7.88-7.80 (ovrlp, 6 H), 7.47 (d, J = 8.2 Hz, 2 H), 3.02 (s, 3 H), 1.33 (s, 9 H).

13C NMR (100 MHz, CDCl$_3$): δ 166.3, 156.2, 143.4, 135.1, 131.2, 128.6, 127.3, 125.9, 120.3, 44.8, 35.1, 31.2. HRMS (ESI): Calcd for C$_{18}$H$_{22}$NO$_3$S [M+H]: 332.1320; Found: 332.1317.

N-(4-(9H-Carbazol-9-yl)phenyl)-4-methylbenzamide (5j). Following the general procedure B, the title compound was prepared using methyl 4-methylbenzoate (1 equiv, 0.50 mmol, 75 mg), 9-(4-nitrophenyl)-9H-carbazole (1.3 equiv, 0.65 mmol, 187 mg), Ni(glyme)Cl$_2$ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (3:1) as an eluent to afford the title compound (5j) as deep-brown solid (120 mg, 64%).

1H NMR (400 MHz, CDCl$_3$): δ 8.14 (d, J = 7.8 Hz, 2 H), 7.98 (s, 1 H), 7.88 (d, J = 8.8 Hz, 2 H), 7.83 (d, J = 8.2 Hz, 2 H), 7.55 (d, J = 8.7 Hz, 2 H), 7.43-7.38 (ovrlp, 4 H), 7.32 (d, J = 8.2 Hz, 2 H), 7.30-7.26 (m, 2 H), 2.45 (s, 3 H).

13C NMR (100 MHz, CDCl$_3$): δ 166.1, 142.8, 141.1, 137.4, 133.8, 131.9, 129.6, 127.9, 127.3, 126.1, 123.4, 121.7, 120.4, 120.0, 109.8, 21.6. HRMS (ESI): Calcd for C$_{26}$H$_{21}$N$_2$O [M+H]: 377.1654; Found: 377.1656.
N-(4-(tert-Butyl)phenyl)-4-fluorobenzamide (5k). Following the general procedure B, the title compound was prepared using ethyl 4-fluorobenzoate (0.50 mmol, 84 mg) and 1-(tert-butyl)-4-nitrobenzene (0.65 mmol, 117 mg). The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (5:1) as an eluent to afford the title compound (5k) as off-white solid (116 mg, 86%).

¹H NMR (400 MHz, CDCl₃): δ 7.95 (s, 1 H), 7.85 (dd, ³Jₕₕ = 8.1 Hz, ⁴Jₕₐₙ = 5.6 Hz, 2 H), 7.53 (d, J = 8.4 Hz, 2 H), 7.36 (d, J = 8.4 Hz, 2 H), 7.10 (dd, ³Jₕₕ = 8.1 Hz, ³Jₕₐₙ = 8.1 Hz, 2 H), 1.32 (s, 9 H).

¹³C NMR (100 MHz, CDCl₃): δ 164.93 (d, ¹Jₕₚ = 250.9 Hz), 164.91, 147.9, 135.3, 131.3 (d, ³Jₕₕ = 3.1 Hz), 129.6 (d, ³Jₕₚ = 8.9 Hz), 126.0, 120.4, 115.9 (d, ²Jₕₚ = 21.8 Hz), 34.6, 31.5. **HRMS (ESI):** Calcd for C₁₇H₁₈FNONa [M+Na]: 294.1270; Found: 294.1273.

--

N-(2,4-Dimethylphenyl)-3-methoxybenzamide (5m). Following the general procedure B, the title compound was prepared using ethyl 3-methoxybenzoate (1 equiv, 0.50 mmol, 90 mg), 2,4-dimethyl-1-nitrobenzene (1.5 equiv, 0.75 mmol, 113 mg), Ni(glyme)Cl₂ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg). The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (3:1) as an eluent to afford the title compound (5m) as pale-brown solid (76 mg, 60%).

¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, J = 8.1 Hz, 1 H), 7.63 (s, 1 H), 7.45 (s, 1 H), 7.40-7.35 (ovrlp, 2 H), 7.09-7.04 (ovrlp, 3 H), 3.86 (s, 3 H), 2.31 (s, 3 H), 2.28 (s, 3 H). **¹³C NMR (100 MHz, CDCl₃):** δ 165.7, 160.1, 136.7, 135.3, 133.2, 131.4, 129.9, 129.8, 127.5, 123.6, 118.8, 118.0, 112.7, 55.6, 21.0, 17.9. **HRMS**...
N-(3-(Trifluoromethyl)phenyl)-2-naphthamide (5n). Following the general procedure B, the title compound was prepared using methyl 2-naphthoate (0.50 mmol, 93 mg) and 1-nitro-3-(trifluoromethyl)benzene (0.65 mmol, 124 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (5:1) as an eluent to afford the title compound (5n) as off-white solid (122 mg, 77%). 1H NMR (400 MHz, CDCl$_3$): δ 8.33 (s, 1 H), 8.27 (s, 1 H), 7.98 (s, 1 H), 7.93-7.85 (ovrlp, 5 H), 7.60-7.52 (ovrlp, 2 H), 7.47 (t, $J = 8.0$ Hz, 1 H), 7.40 (d, $J = 7.8$ Hz, 1 H). 13C NMR (100 MHz, CDCl$_3$): δ 138.7, 135.1, 132.7, 131.7, 131.6 (q, 2J$_{CF} = 32.3$ Hz), 129.8, 129.1, 129.0, 128.3, 128.1, 128.0, 127.8, 127.2 (q, 2J$_{CF} = 270.6$ Hz), 123.52, 123.46 (q, 4J$_{CF} = 0.8$ Hz), 121.2 (q, 3J$_{CF} = 3.8$ Hz), 117.1 (q, 3J$_{CF} = 4.0$ Hz). HRMS (ESI): Calcd for C$_{18}$H$_{13}$F$_3$NO [M+H]: 316.0952; Found: 316.0943.

N-(p-Tolyl)cinnamamide (5o). Following the general procedure B, the title compound was prepared using methyl cinnamate (0.50 mmol, 81 mg) and 4-nitrotoluene (0.65 mmol, 89 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (1:1) as an eluent to afford the title compound (5o) as off-white solid (102 mg, 86%). 1H NMR (400 MHz, CDCl$_3$): δ 8.35 (s, 1 H), 7.70 (d, $J = 15.6$ Hz, 1 H), 7.54 (d, $J = 8.0$ Hz, 2 H), 7.37 (d, $J = 7.1$ Hz, 2 H), 7.31-7.22 (ovrlp, 3 H), 6.65 (d, $J = 15.5$ Hz, 1 H), 2.27 (s, 3 H). 13C NMR (100 MHz, CDCl$_3$): δ 164.6, 142.0, 135.7, 134.8, 134.1, 129.8, 129.6, 128.8, 128.0, 121.4, 120.5, 21.0. HRMS (ESI): Calcd for C$_{16}$H$_{16}$NO [M+H]: 238.1226; Found: 238.1230.

5-Methyl-N-(p-tolyl)nicotinamide (5p). Following the general procedure B, the title compound was prepared using methyl 5-methylnicotinate (0.50 mmol, 76 mg) and 4-nitrotoluene (0.60 mmol, 89 mg). The crude product was purified by preparative TLC using hexanes/CH$_2$Cl$_2$ (1:1) as an eluent to afford the title compound (5p) as off-white solid (88 mg, 78%). 1H NMR (400 MHz, CDCl$_3$): δ 8.83 (s, 1 H), 8.75 (s, 1 H), 8.48 (s, 1 H), 7.94 (s, 1 H), 7.49 (d, $J = 8.0$ Hz, 2 H), 7.11 (d, $J = 8.0$ Hz, 2 H), 2.32 (ovrlp, 6 H). 13C NMR (100 MHz, CDCl$_3$): δ 164.4, 152.6, 145.1, 136.0, 135.2, 134.6, 133.6, 130.7,
N-(p-Tolyl)thiophene-3-carboxamide (5q). Following the general procedure B, the title compound was prepared using ethyl thiophene-3-carboxylate (0.50 mmol, 78 mg) and 4-nitrotoluene (0.60 mmol, 89 mg). The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (5:1) as an eluent to afford the title compound (5q) as off-white solid (90 mg, 83%).

1H NMR (400 MHz, CDCl₃): δ 7.97-7.92 (ovrlp, 2 H), 7.49-7.46 (ovrlp, 3 H), 7.32 (dd, J = 5.0 Hz, J = 2.9 Hz, 1 H), 7.12 (d, J = 8.0 Hz, 2 H), 2.31 (s, 3 H).

13C NMR (100 MHz, CDCl₃): δ 161.4, 138.0, 135.3, 134.3, 129.6, 128.7, 126.7, 126.4, 120.7, 21.0. HRMS (ESI): Calcd for C₁₄H₁₅N₂O [M+H]: 227.1184; Found: 227.1188.

N-(p-Tolyl)furan-3-carboxamide (5r). Following the general procedure B, the title compound was prepared using ethyl furan-3-carboxylate (0.50 mmol, 70 mg) and 4-nitrotoluene (0.65 mmol, 89 mg). The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (5:1) as an eluent to afford the title compound (5r) as pale-brown solid (66 mg, 66%).

1H NMR (400 MHz, CDCl₃): δ 8.14 (s, 1 H), 8.00 (s, 1 H), 7.45 (d, J = 8.0 Hz, 2 H), 7.39 (s, 1 H), 7.08 (d, J = 8.0 Hz, 2 H), 6.74 (s, 1 H), 2.29 (s, 3 H).

13C NMR (100 MHz, CDCl₃): δ 161.2, 145.3, 143.8, 135.2, 134.3, 129.5, 123.1, 120.9, 108.7, 21.0. HRMS (ESI): Calcd for C₁₂H₁₂NO₂ [M+H]: 202.0874; Found: 202.0863.

1-Benzyl-N-(4-(tert-butyl)phenyl)-1H-indole-6-carboxamide (5s). Following the general procedure B, the title compound was prepared using methyl 1-benzyl-1H-indole-6-carboxylate (0.50 mmol, 126 mg) and 1-(tert-butyl)-4-nitrobenzene (0.65 mmol, 116 mg). The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (3:1) as an eluent to afford the title compound (5s) as off-white solid (96 mg, 50%).

1H NMR (400 MHz, CDCl₃): δ 7.98 (s, 1 H), 7.95 (s, 1 H), 7.66 (d, J = 8.1 Hz, 1 H), 5.57-7.50 (ovrlp, 3 H), 7.35 (d, J = 8.1 Hz, 2 H), 7.29-7.22 (ovrlp, 4 H), 7.08 (d, J = 6.3 Hz, 2 H), 6.58 (s, 1 H), 5.31 (s, 2 H), 1.31 (s, 9 H).

13C NMR (100 MHz, CDCl₃): δ 166.6, 147.3, 137.0, 136.2, 135.8, 131.5, 131.2, 129.0, 128.4, 127.9, 127.0, 125.9, 121.0, 120.0, 117.6, 110.3, 102.2, 50.3, 34.5, 31.5. HRMS (ESI): Calcd for C₂₆H₂₇N₂O [M+H]: 383.2123; Found: 383.2126.
8-Methoxydibenzo[b,f][1,4]thiazepin-11(10H)-one (5t).

(i) **0.50 mmol.** Following the general procedure B, the title compound was prepared using n-pentyl 2-((4-methoxy-2-nitrophenyl)thio)benzoate (S6, 1 equiv, 0.50 mmol, 188 mg), Ni(glyme)Cl$_2$ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg) under the reaction temperature of 90 °C. The crude product was purified by preparative TLC using CH$_2$Cl$_2$ as an eluent to afford the title compound (5t) as brown solid (87 mg, 68%). 1H NMR (400 MHz, DMSO-d$_6$): δ 10.61 (s, 1 H), 7.66 (dd, $J = 7.3$ Hz, $J = 1.4$ Hz, 1 H), 7.50 (td, $J = 7.6$ Hz, $J = 1.5$ Hz, 1 H), 7.46-7.40 (ovrlp, 3 H), 6.80 (d, $J = 2.7$ Hz, 1 H), 6.73 (dd, $J = 8.6$ Hz, $J = 2.7$ Hz, 1 H), 3.72 (s, 3 H). 13C NMR (100 MHz, DMSO-d$_6$): δ 168.5, 160.3, 141.1, 138.0, 136.8, 133.4, 131.9, 131.2, 131.1, 128.8, 119.9, 111.2, 108.6, 55.4. HRMS (ESI): Calcd for C$_{14}$H$_{12}$NO$_2$S [M+H]: 258.0583; Found: 258.0576.

(ii) **Gram scale.** Following the general procedure B, the title compound was prepared using n-pentyl 2-((4-methoxy-2-nitrophenyl)thio)benzoate (1 equiv, 2.93 mmol, 1.10 g), Ni(glyme)Cl$_2$ (10 mol %, 64 mg), and phen (10 mol %, 53 mg), Zn (4 equiv, 11.7 mmol, 767 mg), TMSCl (2 equiv, 5.86 mmol, 748 μL), and NMP (12 mL) under the reaction temperature of 90 °C. Spectral and analytical data were identical to those reported for the same compound above.

Dibenzo[b,f][1,4]oxazepin-11(10H)-one (5u). Following the general procedure B, the title compound was prepared using methyl 2-(2-nitrophenoxy)benzoate (0.50 mmol, 137 mg), Ni(glyme)Cl$_2$ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg). The crude product was purified by preparative TLC using CH$_2$Cl$_2$ as an eluent to afford the title compound (6i) as brown solid (79 mg, 74%). 1H NMR (400 MHz, CDCl$_3$): δ 9.21 (s, 1 H), 7.96 (d, $J = 7.4$ Hz, 1 H), 7.53 (d, $J = 7.3$ Hz, 1 H), 7.31-7.22 (ovrlp, 3 H), 7.18-7.10 (ovrlp, 3 H). 13C NMR (100 MHz, CDCl$_3$): δ 167.9, 159.8, 151.1, 134.6, 132.1, 130.8, 126.1, 126.0, 125.4, 125.3, 121.8, 121.5, 121.0. HRMS (ESI): Calcd for C$_{13}$H$_{10}$NO$_2$ [M+H]: 212.0712; Found: 212.0714.

S-110
7-Chlorodibenzo[b,f][1,4]oxazepin-11(10H)-one (5v). Following the general procedure B, the title compound was prepared using methyl 2-(5-chloro-2-nitrophenoxy)benzoate (0.50 mmol, 154 mg), Ni(glyme)Cl₂ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg) under the reaction temperature of 90 °C. The crude product was purified by recrystallization (CH₂Cl₂/hexanes) as solvent to afford the title compound (5v) as deep-brown solid (65 mg, 53%). ¹H NMR (400 MHz, DMSO-d₆): δ 10.61 (s, 1 H), 7.77 (d, J = 7.3 Hz, 1 H), 7.63 (t, J = 7.4 Hz, 1 H), 7.50 (s, 1 H), 7.38-7.31 (ovrlp, 2 H), 7.26 (d, J = 7.9 Hz, 1 H), 7.17 (d, J = 8.4 Hz, 1 H). ¹³C NMR (100 MHz, DMSO-d₆): δ 165.1, 158.1, 150.3, 134.3, 131.1, 130.1, 128.0, 125.7, 125.5, 125.1, 122.4, 121.2, 120.4. HRMS (ESI): Calcd for C₁₃H₉ClNO₂ [M+H]: 246.0322; Found: 246.0322.

8-Chlorodibenzo[b,f][1,4]thiazepin-11(10H)-one (6a). Following the general procedure B, the title compound was prepared using methyl 2-(4-chloro-2-nitrophenyl)thio)benzoate (0.50 mmol, 162 mg), Ni(glyme)Cl₂ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg) under the reaction temperature of 90 °C. The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (1:1) as an eluent to afford the title compound (6a) as brown solid (61 mg, 47%). ¹H NMR (400 MHz, DMSO-d₆): δ 10.76 (s, 1 H), 7.68 (dd, J = 7.4 Hz, J = 1.4 Hz, 1 H), 7.57 (d, J = 8.3 Hz, 1 H), 7.54-7.44 (ovrlp, 3 H), 7.27 (d, J = 2.0 Hz, 1 H), 7.21 (dd, J = 8.3 Hz, J = 2.1 Hz, 1 H). ¹³C NMR (100 MHz, DMSO-d₆): δ 167.9, 141.0, 137.3, 135.3, 133.7, 132.0, 131.2, 131.1, 128.9, 127.5, 124.9, 122.3. HRMS (ESI): Calcd for C₁₃H₉ClNOS [M+H]: 262.0093; Found: 262.0095.

Dibenzo[b,f][1,4]thiazepin-11(10H)-one (6b). Following the general procedure B, the title compound was prepared using methyl 2-((2-nitrophenyl)thio)benzoate (0.50 mmol, 145 mg), Ni(glyme)Cl₂ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg) under the reaction temperature of 90 °C. The crude product was purified by preparative TLC using CH₂Cl₂ as an eluent to afford the title compound (6b) as brown solid (76 mg, 67%). ¹H NMR (400 MHz, DMSO-d₆): δ 10.69 (s, 1 H), 7.68 (dd, J = 7.1 Hz, J = 1.2 Hz, 1 H), 7.57-7.52 (ovrlp, 2 H), 7.50-7.42 (ovrlp, 2 H), 7.36 (t, J = 7.3 Hz, 1 H), 7.23 (d, J = 7.7 Hz, 1 H), 7.14 (t, J = 7.3 Hz, 1 H). ¹³C NMR (100 MHz, DMSO-d₆): δ 168.4, 139.9, 137.9, 136.3, 132.5, 132.0, 131.4, 131.3, 129.8, 129.0, 128.9, 125.4, 123.2. HRMS (ESI): Calcd for C₁₃H₁₀NOS [M+H]: 228.0483; Found: 228.0485.
2-(2-Chlorophenyl)-N-(2-phenylbenzo[d]oxazol-5-yl)acetamide (6c). Following the general procedure A, the title compound was prepared using methyl 2-(2-chlorophenyl)acetate (1 equiv, 0.50 mmol, 92 mg), 5-nitro-2-phenylbenzo[d]oxazole (1.2 equiv, 0.60 mmol, 144 mg), Ni(glyme)Cl₂ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg). The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (3:1) as an eluent to afford the title compound (6d) as deep brown solid (117 mg, 65%). \(^1\)H NMR (400 MHz, CDCl₃): δ 8.20 (d, \(J = 5.9\) Hz, 2 H), 7.86 (s, 1 H), 7.54-7.47 (ovrlp, 3 H), 7.45-7.31 (ovrlp, 7 H), 3.76 (s, 2 H). \(^1^3\)C NMR (100 MHz, CDCl₃): δ 169.4, 164.0, 147.8, 142.6, 134.7, 134.6, 131.7, 129.7, 129.4, 129.0, 127.81, 127.76, 127.1, 118.4, 111.9, 110.5, 44.9. HRMS (ESI): Calcd for C₂₁H₁₆ClN₂O₂ [M+H]: 363.0900; Found: 363.0898.

N-(2-Phenylbenzo[d]oxazol-5-yl)benzamide (6d). Following the general procedure B, the title compound was prepared using methyl benzoate (1 equiv, 0.35 mmol, 48 mg), 5-nitro-2-phenylbenzo[d]oxazole (1.3 equiv, 0.455 mmol, 109 mg), Ni(glyme)Cl₂ (10 mol %, 7.7 mg), and phen (10 mol %, 6.3 mg), Zn (4 equiv, 1.4 mmol, 92 mg), TMSCl (2 equiv, 0.70 mmol, 89 μL), and NMP (0.70 mL). The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (3:1) as an eluent to afford the title compound (6e) as deep-brown solid (66 mg, 60%). \(^1\)H NMR (400 MHz, CDCl₃): δ 8.23 (d, \(J = 4.6\) Hz, 2 H), 8.12 (s, 1 H), 8.03 (s, 1 H), 7.89 (d, \(J = 6.7\) Hz, 2 H), 7.65 (d, \(J = 7.7\) Hz, 1 H), 7.57-7.44 (ovrlp, 7 H). \(^1^3\)C NMR (100 MHz, CDCl₃): δ 166.1, 164.1, 148.0, 142.7, 135.01, 134.98, 132.0, 131.8, 129.0, 128.9, 127.8, 127.2, 127.1, 118.9, 112.3, 110.7. HRMS (ESI): Calcd for C₂₀H₁₅N₂O₂ [M+H]: 315.1133; Found: 315.1135.

N-(2-(4-Fluorophenyl)benzo[d]oxazol-5-yl)-2-phenylacetamide (6e). Following the general procedure A, the title compound was prepared using methyl 2-phenylacetate (1 equiv, 0.50 mmol, 75 mg), 2-(4-fluorophenyl)-5-nitrobenzo[d]oxazole (1.3 equiv, 0.65 mmol, 168 mg), Ni(glyme)Cl₂ (10 mol %, 11.0 mg), and phen (10 mol %, 9.0 mg) under the reaction temperature of 120 °C. The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (3:1) as an eluent to afford the title compound (6f) as pale-brown solid (120 mg, 69%). \(^1\)H NMR (400 MHz, CDCl₃): δ 8.22 (dd, \(^3\)J_HH = 8.7 Hz, \(^4\)J_HF = 5.4 Hz, 2 H), 7.86 (d, \(J = 1.6\) Hz, 1 H), 7.46-7.41 (ovrlp, 3 H), 7.38-7.34 (ovrlp, 4 H), 7.25 (s, 1 H), 7.20 (dd, \(^3\)J_HH = 8.6 Hz, \(^4\)J_HF = 8.6 Hz, 2 H), 3.79 (s, 2 H). \(^1^3\)C NMR (100 MHz, CDCl₃): δ 169.3, 165.0 (d, \(^1\)J_CF = 251.4 Hz), 163.2, 147.9, 142.6, 134.8, 134.5, 130.0 (d, \(^3\)J_CF = 8.9 Hz), 129.7, 129.5, 127.9, 123.5 (d, \(^4\)J_CF = 2.9 Hz), 118.3, 116.3 (d, \(^2\)J_CF = 22.1 Hz), 111.9, 110.5, 44.9. HRMS
(ESI): Calcd for C_{21}H_{16}FN_{2}O_{2} [M+H]: 347.1190; Found: 347.1196.

(R)-3a-Ethyl-2,3,3a,4,5,7-hexahydrobenzo[2,3]azonino[6,5,4-hi]indolin-6(1H)-one (R)-3-(8-ethyl-1-(2-nitrophenyl)-5,6,7,8-tetrahydroindolin-8-yl)propanoate (R)-3a-Ethyl-2,3,3a,4,5,7-hexahydrobenzo[2,3]azonino[6,5,4-hi]indolin-6(1H)-one (R)-3-(8-ethyl-1-(2-nitrophenyl)-5,6,7,8-tetrahydroindolin-8-yl)propanoate \(^{16}\) Following the general procedure A, the title compound was prepared using methyl (R)-3-(8-ethyl-1-(2-nitrophenyl)-5,6,7,8-tetrahydroindolin-8-yl)propanoate \(^{16}\) (1 equiv, 0.0269 mmol, 9.6 mg), Ni(glyme)Cl \(_2\) (20 mol %, 1.2 mg), phen (20 mol %, 1.0 mg), Zn (4 equiv, 0.108 mmol, 7 mg), TMSCl (2 equiv, 0.0538 mmol, 7 \(\mu\)L), and NMP (0.3 mL) in a 2 mL-Teflon-screw cap test tube under the reaction temperature of 120 °C. The crude product was purified by preparative TLC using hexanes/CH\(_2\)Cl\(_2\) (3:1) as an eluent to afford the title compound (6c) as off-white solid (4.7 mg, 59%). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.43 (dd, \(J = 7.2\) Hz, \(J = 1.7\) Hz, 1 H), 7.37-7.28 (ovrlp, 2 H), 7.21 (d, \(J = 7.7\) Hz, 1 H), 6.56 (s, 1 H), 6.51 (d, \(J = 2.6\) Hz, 1 H), 5.76 (d, \(J = 2.6\) Hz, 1 H), 4.01 (dd, \(J = 11.8\) Hz, \(J = 5.5\) Hz, 1 H), 4.01 (dd, \(J = 2.6\) Hz, 1 H), 4.01 (dd, \(J = 11.8\) Hz, \(J = 5.5\) Hz, 1 H), 3.79 (td, \(J = 12.1\) Hz, \(J = 4.7\) Hz, 1 H), 2.50-2.31 (m, 1 H), 2.31-2.17 (m, 1 H), 1.98 (dd, \(J = 13.0\) Hz, \(J = 7.8\) Hz, 1 H), 1.89-1.82 (m, 1 H), 1.72 (td, \(J = 13.5\) Hz, \(J = 3.1\) Hz, 1 H), 1.53-1.42 (ovrlp, 3 H), 1.30-1.20 (m, 1 H), 0.72 (t, \(J = 7.4\) Hz, 3 H). HRMS (ESI): Calcd for C\(_{19}\)H\(_{23}\)N\(_2\)O \([M+H]\): 295.1805; Found: 295.1795.

N-(4-(tert-Butyl)phenyl)-6-((4,4-dimethylthiochroman-6-yl)ethyl)nicotinamide (6g). Following the general procedure B, the title compound was prepared using ethyl 6-((4,4-dimethylthiochroman-6-yl)ethyl)nicotinate (Tazarotene, 1 equiv, 0.10 mmol, 35 mg), 1-(tert-butyl)-4-nitrobenzene (1.5 equiv, 0.15 mmol, 27 mg), Ni(glyme)Cl \(_2\) (15 mol %, 3.3 mg), and phen (15 mol %, 2.7 mg), Zn (4 equiv, 0.40 mmol, 26 mg), TMSCl (2 equiv, 0.20 mmol, 26 \(\mu\)L), and NMP (0.30 mL). The crude product was purified by preparative TLC using hexanes/CH\(_2\)Cl\(_2\) (3:1) as an eluent to afford the title compound (6g) as pale-brown solid (28 mg, 62%). \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 9.05 (s, 1 H), 8.17 (dd, \(J = 8.1\) Hz, \(J = 2.3\) Hz, 1 H), 8.05 (s, 1 H), 7.61-7.55 (ovrlp, 4 H), 7.39 (d, \(J = 8.7\) Hz, 2 H), 7.23 (dd, \(J = 8.2\) Hz, \(J = 1.8\) Hz, 1 H), 7.07 (d, \(J = 8.1\) Hz, 1 H), 3.05 (d, \(J = 6.0\) Hz, 2 H), 1.95 (d, \(J = 6.1\) Hz, 2 H), 1.33-1.32 (ovrlp, 15 H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 163.4, 148.3, 146.4, 142.3, 135.6, 135.D 2, 134.9, 130.6, 129.5, 129.1, 126.83, 126.77, 126.1, 120.4, 116.9, 93.1, 87.8, 37.2, 34.6, 33.1, 31.5, 30.1, 23.4. HRMS (ESI): Calcd for C\(_{29}\)H\(_{31}\)N\(_2\)OS \([M+H]\): 455.2157; Found: 455.2157.
N-(4-(tert-Butyl)phenyl)-2-(4-chloro-2-methylphenoxy)acetamide (6h). Following the general procedure A, the title compound was prepared using methyl 2-(4-chloro-2-methylphenoxy)acetate (MCPA-methyl, 1 equiv, 0.25 mmol, 54 mg), 1-(tert-butyl)-4-nitrobenzene (1.5 equiv, 0.375 mmol, 67 mg), Ni(glyme)Cl₂ (15 mol %, 8.3 mg), and phen (15 mol %, 6.8 mg), Zn (4 equiv, 1.0 mmol, 65.4 mg), TMSCl (2 equiv, 0.50 mmol, 64 μL), and NMP (0.50 mL). The crude product was purified by preparative TLC using hexanes/CH₂Cl₂ (5:1) as an eluent to afford the title compound (6h) as off-white solid (40 mg, 48%).

\[\text{1H NMR (400 MHz, CDCl}_3\text{: } \delta 8.20 \text{ (s, 1 H), 7.48 (d, } J = 8.7 \text{ Hz, 2 H), 7.37 (d, } J = 8.7 \text{ Hz, 2 H), 7.18 (d, } J = 2.2 \text{ Hz, 1 H), 7.14 (dd, } J = 8.6 \text{ Hz, } J = 2.4 \text{ Hz, 1 H), 6.75 (d, } J = 8.6 \text{ Hz, 1 H), 4.57 (s, 2 H), 2.33 (s, 3 H), 1.31 (s, 9 H).} \]

\[\text{13C NMR (100 MHz, CDCl}_3\text{: } \delta 166.0, 154.0, 148.2, 134.2, 131.1, 128.6, 127.15, 127.09, 126.1, 120.0, 113.2, 68.2, 34.6, 31.5, 16.4.} \]

HRMS (ESI):

Calcd for C₁₉H₂₃ClNO₂ [M+H]: 332.1417; Found: 332.1418.

Screening Conditions for Reaction between Methyl Decanoate and Various Nitrobenzene-derived Intermediates.

(i) **General Considerations.** For all intermediates, the reaction was performed with 7.5 mol% Ni(glyme)Cl₂ / phen catalyst loading. 0.5 M ester (= 1 equiv) in 0.5 ml NMP was used. The reactions were performed with naphthalene as internal standard. Conversions and yields were analyzed by preparation of GC samples from the crude reaction mixtures and measuring the ratio of peak area of the ester and amide versus naphthalene. A peak area to concentration conversion factor of 0.87 was found through a calibration curve of isolated product amide versus naphthalene and this was used for determination of yield. Errors as large as 5 percentage points between independent experiments could generally be observed.

(ii) **Nitrosobenzene.** Reactions were set up by varying the loading of zinc (2-4 equiv) and TMSCl (1-2 equiv) systematically (Table S12). At the end of the reaction, 3ml water and 3 ml EtOAc were added and a GC sample was prepared with 50 μL from the top organic layer.

(iii) **N-Phenylhydroxyamine.** Reactions were set up by varying the loading of zinc (2-4 equiv) and TMSCl (1-2 equiv) systematically (Table S13). At the end of the reaction, a few drops of the reaction mixture were added to 1 mL Et₂O. The resulting suspension was shaken and filtered for GC sample preparation. The results show that starting with fewer equivalents than the standard conditions for the reaction with nitrobenzene leads to poorer yields.
(iv) **Aniline.** Reactions were set up under conditions that might be relevant at a point in the reaction where a reasonable amount of aniline might have formed, including the addition of ZnCl$_2$, as surrogate for the Zn(II) species that should form during the reaction and might influence the reactivity (Table S14). At the end of the reaction, a few drops of the reaction mixture were added to 1 mL Et$_2$O. The resulting suspension was shaken and filtered for GC sample preparation. Despite a rather thorough screening of potentially relevant conditions, no yield higher than 45% was observed, ruling out aniline as an important intermediate.

(v) **Azoxybenzene.** Reactions were set up by varying the loading of zinc (1-4 equiv) and TMSCl (0.09-1 equiv) systematically (Table S15). At the end of the reaction, a few drops of the reaction mixture were added to 1 mL Et$_2$O. The resulting suspension was shaken and filtered for GC sample preparation.

Stoichiometric experiment of 4,4’-difluoroazobenzene

In a nitrogen atmosphere glove box, 71.2 mg Zn (1.1 mmol, 2.2 eq), 219 mg Ni(glyme)Cl$_2$ (1.0 mmol, 2 eq), 180 mg 1,10-phenanthroline (1.0 mmol, 2 eq), 1.8 mmol NMP (dried by storing over 3Å molecular sieves), and 1.2 mg trimethylsilylchloride (0.015 mmol, 0.022 eq) were added to an oven dried scintillation vial. After stirring for 30 minutes, the mixture had turned from grey to black. 108 mg 4,4’-difluoroazobenzene (0.49 mmol, 1 eq) and 16.6 mg α,α,α-trifluorotoluene (0.114 mmol) were then added to the above solution. After stirring the mixture for 2 hours at room temperature, 0.5 ml was filtered into an oven dried young’s NMR tube equipped with a DMSO-d$_6$ capillary. The remainder of the mixture was heated to 90°C for three days. Another 0.5 ml was then filtered into another oven dried young’s NMR tube equipped with a DMSO-d$_6$ capillary. To the remainder of the reaction mixture was added 80.8 mg methyl decanoate (0.434 mmol, 1.97 eq) and the resulting mixture was heated to 90°C over night. 20 µl of the reaction mixture was taken for a GC/MS sample and the remainder was filtered into an oven dried young’s NMR tube equipped with a DMSO-d$_6$ capillary. 19F{H} NMR (376.3 MHz), referenced to α,α,α-trifluorotoluene (-63.72 ppm, 1.00 integral) RT sample: -111.25 ppm (integral 1.15, free azobenzene), two merged broad peaks at -126.67 ppm and -129.42 ppm (combined integral 0.60). 3d 90°C sample: -131.59 ppm (integral 0.63) along with a few ill-defined peaks. Sample after reaction with ester: -122.45 ppm (integral 1.71, amidate), along with some ill-defined species. GC/MS analysis of the mixture after reaction with ester indicates the presence of the amide product and some aniline side-product, with a ratio of ~10:1 favoring the amide.
Supplementary References

12. Rogers, K. & Patzke, H. (Envivo Pharmaceuticals, Inc., USA & MethylGene Inc.) Preparation of

