Supplementary Figure 1. Global distribution of the sampling sites per ecosystem category. One dot is used per primary study and each dot may represent several studies and/or sites undergoing recovery.
Supplementary Figure 2. PRISMA flow chart of studies included in the meta-analysis. It does not include studies coming from studies refs. 1 and 2 that have been previously published. Structure and template for flow chart from ref. 3.
Supplementary Figure 3. Mean recovery debt values and 95% confidence intervals of the abundance of organisms across organism and ecosystem types. Only abundance was included because it was the only metric with enough data to perform the comparison.
Supplementary Figure 4. Mean recovery debt values and 95% confidence intervals of the abundance of organisms across organism types and degradation categories. Only abundance was included because it was the only metric with enough data to perform the comparison.
Supplementary Figure 5. Scenarios used to estimate the recovery debt. X_s, value of the outcome measure at the starting point; X_e, value at the end point in the recovery trajectory; and X_r, reference value at the reference system. T is the time elapsed between the starting and the end point. Orange shading represents recovery debt estimated without transformation; yellow shading represents recovery debt estimated after transforming X_s and X_e into $Z_{s,e}$ (see Methods); and green shading represents areas under the curve used to estimate recovery debt. Note than in scenario e, $X_r = 0$.
Supplementary Figure 6. Comparison between exponential and linear approaches to estimate the recovery debt. Only abundance means predicted by the model and confidence intervals by ecosystem categories are showed.
Supplementary Figure 7. Comparison between recovery debts calculated excluding outcome measures containing zero values and including transformed zero values. Only abundance means predicted by the model and confidence intervals by ecosystem categories are showed.
Supplementary Table 1. Distribution of outcome measures, primary studies, sites, and recovering area by ecosystem and disturbance categories. Studies may report outcome measures from multiple ecosystem categories or disturbance categories and thus the totals do not match the total amount of studies selected for the meta-analysis.

<table>
<thead>
<tr>
<th>Ecosystem</th>
<th>No. outcome measures</th>
<th>Average (min. – max.) no. outcome measures per study</th>
<th>No. studies</th>
<th>No. sites recovering</th>
<th>No. reference sites</th>
<th>Area recovering (km²)</th>
<th>Studies reporting restored area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>1,616</td>
<td>11.6 (1 – 72)</td>
<td>139</td>
<td>1,334</td>
<td>729</td>
<td>206,010</td>
<td>72</td>
</tr>
<tr>
<td>Grassland</td>
<td>254</td>
<td>9.8 (1 – 52)</td>
<td>26</td>
<td>151</td>
<td>53</td>
<td>1,051</td>
<td>59</td>
</tr>
<tr>
<td>Wetland</td>
<td>322</td>
<td>7.3 (1 – 32)</td>
<td>44</td>
<td>352</td>
<td>211</td>
<td>15,574</td>
<td>83</td>
</tr>
<tr>
<td>River</td>
<td>271</td>
<td>7.7 (1 – 38)</td>
<td>35</td>
<td>156</td>
<td>82</td>
<td>5,340</td>
<td>35</td>
</tr>
<tr>
<td>Lake</td>
<td>646</td>
<td>12.2 (1 – 75)</td>
<td>53</td>
<td>353</td>
<td>188</td>
<td>34,823</td>
<td>81</td>
</tr>
<tr>
<td>Marine system</td>
<td>707</td>
<td>10.6 (1 – 48)</td>
<td>67</td>
<td>689</td>
<td>349</td>
<td>287,888</td>
<td>65</td>
</tr>
<tr>
<td>Disturbance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture</td>
<td>625</td>
<td>11.2 (1 – 56)</td>
<td>56</td>
<td>525</td>
<td>184</td>
<td>103,180</td>
<td>68</td>
</tr>
<tr>
<td>Logging</td>
<td>506</td>
<td>9.7 (1 – 52)</td>
<td>52</td>
<td>368</td>
<td>268</td>
<td>51,017</td>
<td>72</td>
</tr>
<tr>
<td>Mining</td>
<td>646</td>
<td>13.5 (1 – 48)</td>
<td>48</td>
<td>274</td>
<td>199</td>
<td>1,320</td>
<td>68</td>
</tr>
<tr>
<td>Invasive species</td>
<td>72</td>
<td>8.0 (1 – 9)</td>
<td>9</td>
<td>46</td>
<td>37</td>
<td>24,153</td>
<td>89</td>
</tr>
<tr>
<td>Hydrological disruption</td>
<td>123</td>
<td>5.3 (1 – 23)</td>
<td>23</td>
<td>227</td>
<td>93</td>
<td>5,556</td>
<td>64</td>
</tr>
<tr>
<td>Eutrophication</td>
<td>811</td>
<td>12.9 (1 – 63)</td>
<td>63</td>
<td>406</td>
<td>214</td>
<td>9,690</td>
<td>78</td>
</tr>
<tr>
<td>Oil spill</td>
<td>307</td>
<td>8.3 (1 – 37)</td>
<td>37</td>
<td>148</td>
<td>80</td>
<td>35,244</td>
<td>40</td>
</tr>
<tr>
<td>Overfishing</td>
<td>84</td>
<td>6.5 (1 – 13)</td>
<td>13</td>
<td>193</td>
<td>34</td>
<td>325</td>
<td>85</td>
</tr>
<tr>
<td>Multiple</td>
<td>58</td>
<td>3.6 (1 – 16)</td>
<td>16</td>
<td>305</td>
<td>72</td>
<td>405,321</td>
<td>100</td>
</tr>
<tr>
<td>Hurricanes</td>
<td>584</td>
<td>14.2 (1 – 41)</td>
<td>41</td>
<td>543</td>
<td>414</td>
<td>15,986</td>
<td>67</td>
</tr>
</tbody>
</table>
Supplementary Table 2. Results of the test of moderator effects on the selected response metrics.

<table>
<thead>
<tr>
<th>Subset</th>
<th>Moderator</th>
<th>Q_M</th>
<th>df</th>
<th>Test of moderators p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abundance</td>
<td>Habitat</td>
<td>189.11</td>
<td>5</td>
<td><0.0001</td>
</tr>
<tr>
<td>Abundance</td>
<td>Disturbance</td>
<td>42.83</td>
<td>9</td>
<td><0.0001</td>
</tr>
<tr>
<td>Diversity</td>
<td>Habitat</td>
<td>7.36</td>
<td>5</td>
<td>0.1951</td>
</tr>
<tr>
<td>Diversity</td>
<td>Disturbance</td>
<td>21.39</td>
<td>7</td>
<td>0.0032</td>
</tr>
<tr>
<td>Carbon</td>
<td>Habitat</td>
<td>5.85</td>
<td>5</td>
<td>0.3213</td>
</tr>
<tr>
<td>Carbon</td>
<td>Disturbance</td>
<td>59.35</td>
<td>4</td>
<td><0.0001</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Habitat</td>
<td>8.21</td>
<td>4</td>
<td>0.084</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Disturbance</td>
<td>9.77</td>
<td>5</td>
<td>0.0822</td>
</tr>
</tbody>
</table>
Supplementary Table 3. Results of the test to select the optimal amount to be added to outcome measures with zero values. We used Mann-Whitney rank sum tests to compare values of the r parameter (see Methods) of the database excluding outcome measures that contain zero values and of the full database using nine different strategies. The first row shows the results for the database excluding outcome measures containing zero values. = OM, amount added of the same order of magnitude that X_s and X_g. OM+1, amount added one order of magnitude larger than X_s and X_g. X.1, amount added is the smallest value of the order of magnitude (e.g. 0.1, 1, 10). X.5, amount added is the median of the order of magnitude (e.g. 0.5, 5, 50).

<table>
<thead>
<tr>
<th>Amount added</th>
<th>n</th>
<th>Median</th>
<th>CI 25%</th>
<th>CI 75%</th>
<th>U</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3,405</td>
<td>0.0336</td>
<td>0.00212</td>
<td>0.173</td>
<td>270,049</td>
<td><0.001</td>
</tr>
<tr>
<td>0.01</td>
<td>366</td>
<td>0.317</td>
<td>0.138</td>
<td>1.024</td>
<td>270,049</td>
<td><0.001</td>
</tr>
<tr>
<td>0.05</td>
<td>366</td>
<td>0.217</td>
<td>0.0956</td>
<td>0.665</td>
<td>320,288</td>
<td><0.001</td>
</tr>
<tr>
<td>0.1</td>
<td>366</td>
<td>0.176</td>
<td>0.0743</td>
<td>0.596</td>
<td>345,922</td>
<td><0.001</td>
</tr>
<tr>
<td>0.5</td>
<td>366</td>
<td>0.107</td>
<td>0.0294</td>
<td>0.421</td>
<td>431,846</td>
<td><0.001</td>
</tr>
<tr>
<td>1</td>
<td>366</td>
<td>0.0754</td>
<td>0.0174</td>
<td>0.339</td>
<td>477,439</td>
<td><0.001</td>
</tr>
<tr>
<td>= OM, X.1</td>
<td>366</td>
<td>0.077</td>
<td>0.0322</td>
<td>0.25</td>
<td>446,684</td>
<td><0.001</td>
</tr>
<tr>
<td>= OM, X.5</td>
<td>366</td>
<td>0.0228</td>
<td>0.00733</td>
<td>0.0741</td>
<td>602,144</td>
<td>0.316</td>
</tr>
<tr>
<td>OM + 1, X.1</td>
<td>366</td>
<td>0.016</td>
<td>0.00567</td>
<td>0.0538</td>
<td>570,178</td>
<td>0.007</td>
</tr>
<tr>
<td>OM + 1, X.5</td>
<td>366</td>
<td>0.00358</td>
<td>0.00126</td>
<td>0.0118</td>
<td>417,130</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Supplementary references

List of references used in the meta-analysis.

16. Badejo, M. A. Acarine populations of forest and fallow plots in Ile-Ife, Nigeria. *Pedobiologia*

50. Carey, A. B., Peterson, C. & Maguire, D. A. Active intentional management (AIM) for

68. Constantino, R. *et al.* Clam dredging effects and subsequent recovery of benthic communities

88. Doi, R. & Ranamukhaarachchi, S. L. Community-level Physiological Profiling in Monitoring

123. Gunn, J., Sarrazin-Delay, C., Wesolek, B., Stasko, A. & Szkokan-Emilson, E. Delayed recovery of benthic macroinvertebrate communities in Junction Creek, Sudbury, Ontario,

126. Hall-Spencer 2000

142. Imbert, D. & Portecop, J. Hurricane disturbance and forest resilience: Assessing

161. Kavanagh, R. P. & Stanton, M. A. Bird population recovery 22 years after intensive
163. Kennard, D. K. Secondary forest succession in a tropical dry forest: patterns of
development across a 50-year chronosequence in lowland Bolivia. J. Trop. Ecol. 18, 53–66
(2002).
164. Kil, H. K. & Bae, Y. J. Effects of low-head dam removal on benthic macroinvertebrate
166. Kimball, M. E. & Able, K. W. Nekton utilization of intertidal salt marsh creeks: Tidal
influences in natural Spartina, invasive Phragmites, and marshes treated for Phragmites
168. Klanderud, K. et al. Recovery of plant species richness and composition after slash-and-
(2010).
169. Knops, J. M. H. & Tilman, D. Dynamics of Soil Nitrogen and Carbon Accumulation for
debris in jarrah forest and rehabilitated bauxite mines in Western Australia. Ann. For. Sci. 67,
106 (2010).
172. Konsulova, T. H., Trayanova, A. T. & Todorova, V. R. Sand bank Koketrays - a Case
Study on the Effect of Marine Protected Area Designation as a Key approach to Black Sea
173. Korhola, A. & Blom, T. Marked early 20th century pollution and the subsequent
recovery of Töölö Bay, central Helsinki, as indicated by subfossil diatom assemblage
175. Kraufvelin, P., Moy, F. E., Christie, H. & Bokn, T. L. Nutrient addition to experimental
rocky shore communities revisited: delayed responses, rapid recovery. Ecosystems 9, 1076–
176. Krause, J. C., Diesing, M. & Arlt, G. The physical and biological impact of sand
redevelopment after clearcutting in high mountain forests. Biodivers. Conserv. 17, 2339–
2355 (2008).
178. Kubach, K. M., Scott, M. C. & Bulak, J. S. Recovery of a temperate riverine fish

196. Lima, A. *et al.* Nitrogen-fixing bacteria communities occurring in soils under different
uses in the Western Amazon Region as indicated by nodulation of siratro

286. Sandman, O. *et al.* Short-code paleolimnological investigation of Lake Pihlajavesi in the

303. Sublette, K. *et al.* Monitoring soil ecosystem recovery following bioremediation of a

