Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes

R Codes:

```
##### install packages
install.packages(c("metafor","lmodel2","smatr","glm2","ggplot2"))
library(metafor,lmodel2,smatr,glm2,ggplot2)

### read data from Supplementary Dataset 1
mydata<-read.csv(file.choose())

## subset data
natural<-subset(mydata, mydata$System=="01Natural")
controlled<-subset(mydata, mydata$System=="02Controlled");controlled$biome<-"02controlled"

natNP<-subset(natural, natural$cnp=="[NP]";conNP<-subset(controlled, controlled$cnp=="[NP]"

####Figure 2
###Fig.2a: Regression meta-analysis C, N, P, N/P, C/N, C/P in natural systems
### calculate log transformed response ratio and corresponding sampling variances
natNPdat <- escalc(m1i=Xe, sd1i=Se, n1i=Ne, m2i=Xc, sd2i=Sc, n2i=Nc, measure="ROM", data=natNP, append=TRUE)
####or
yi <- with(natNP, log(Xe/Xc)); vi <- with(natNP, (1/Ne)*(Se/Xe)^2 + (1/Nc)*(Sc/Xc)^2)
rNP<-rma.uni(yi,vi,mods=~factor(treatment)-1, method="REML", data=natNPdat, digits=8); summary(rNP)

conNPdat <- escalc(m1i=Xe, sd1i=Se, n1i=Ne, m2i=Xc, sd2i=Sc, n2i=Nc, measure="ROM", data=conNP, append=TRUE)
####or
yi <- with(conNP, log(Xe/Xc)); vi <- with(conNP, (1/Ne)*(Se/Xe)^2 + (1/Nc)*(Sc/Xc)^2)
rNPcon<-rma.uni(yi,vi,mods=~factor(treatment)-1, method="REML", data=conNPdat, digits=8); summary(rNPcon)

####Fig.2b: interaction
naturalinter<-natural; naturalinter$sources<-paste(natural$Author,natural$Journal,sep = ")
natinterdat <- escalc(m1i=Xe, sd1i=Se, n1i=Ne, m2i=Xc, sd2i=Sc, n2i=Nc,measure="ROM", data=naturalinter, append=TRUE)
interNP<-subset(natinterdat, natinterdat$cnp=="[NP]"

NPco2<-subset(interNP, interNP$treatment=="01CO2")
NPt<-subset(interNP, interNP$treatment=="02T")
```
NPr <- subset(interNP, interNP$treatment == "03R")
NPn <- subset(interNP, interNP$treatment == "05N")
NPp <- subset(interNP, interNP$treatment == "06P")
NPct <- subset(interNP, interNP$treatment == "07CT")
NPcn <- subset(interNP, interNP$treatment == "10CN")
NPrn <- subset(interNP, interNP$treatment == "17RN")
NPnp <- subset(interNP, interNP$treatment == "21NP")
interNP <- rbind(NP$co2, NP$t, NPr, NPn, NPp, NPct, NPcn, NPrn, NP$np)

NP$control$ <- rbind(NP$co2, NP$t, NPr, NPn, NP$p)
NP$control$<-'CO2' <- "N"; NP$control$<-'T' <- "N"; NP$control$<-'R' <- "N"; NP$control$<-'D' <- "N";
NP$control$<-'N' <- "N"; NP$control$<-'P' <- "N"
NP$control$treatment <- "control"; NP$control$treat <- "NNNNNNN"
NPadd <- rbind(NP$control, interNP)

yi <- with(NP$add, log(Xe/Xc)); vi <- with(NP$add, (1/Ne)*(Se/Xe)^2 + (1/Nc)*(Sc/Xc)^2)
NP$additive$ <- rma.uni(yi, vi, mods = ~CO2*T+R+N+P+CO2*T+CO2*N+R*N+N*P-1,
method = "REML", data = NP$add, digits = 8); summary(NP$additive)
#CO2+warming
IDinterNPct <- unique(NPctsources); NPctadd <- interNP[1,]
for(i in 1:length(IDinterNP$ct)) {
 dat.temp <- interNP[which(interNP$sources == IDinterNP$ct[i]),]
 if (nrow(dat.temp) == 0) {next}
 else if (any(dat.temp$treatment == "01CO2") & any(dat.temp$treatment == "02T") &
 any(dat.temp$treatment == "07CT"))
 {NPctadd <- rbind(NPctadd, dat.temp)}
}

NPctadd <- NPctadd[-1,]; NPctadd <- NPctadd[order(NPctadd$Author),]
NPct01CO2sub <- subset(NPctadd, NPctadd$treatment == "01CO2")
NPct02Tsub <- subset(NPctadd, NPctadd$treatment == "02T")
NPct07CTsub <- subset(NPctadd, NPctadd$treatment == "07CT")
NPctadd1 <- rbind(NPct01CO2sub, NPct02Tsub, NPct07CTsub)
NP$control$ <- NPct07CTsub
NPctcontrol$<-'CO2' <- "N"; NP$ct$control$<-'T' <- "N"; NPctcontrol$<-'R' <- "N"; NP$ct$control$<-'D' <- "N";
NPctcontrol$<-'N' <- "N"; NP$ct$control$<-'P' <- "N"
NPctcontrol$treatment <- "control"; NPctcontrol$treat <- "NNNNNNN"
NPctadd2 <- rbind(NPctcontrol, NPctadd1)
NPctinterdat <- escalc(m1i = Xe, sd1i = Se, n1i = Ne, m2i = Xc, sd2i = Sc, n2i = Nc, measure = "ROM",
data = NPctadd2, append = TRUE)
summary(rma.uni(yi, vi, mods = ~CO2*T, method = "REML", data = NPctinterdat, digits = 8));
summary(aovNPctadd)

#CO2+N
IDinterNPcn <- unique(NPcnsources)
NPcnadd<-interNP[1,]

for(i in 1:length(IDinterNPcn)){
 dat.temp<-interNP[which(interNP$sources==IDinterNPcn[i]),]
 if (nrow(dat.temp)==0){next}
 else if (any(dat.temp$treatment=="01CO2") & any(dat.temp$treatment=="05N") & any(dat.temp$treatment=="10CN")){NPcnadd<-rbind(NPcnadd,dat.temp)}
}

NPcnadd<-NPcnadd[-(1),]
NPcnadd<-NPcnadd[order(NPcnadd$Author),]

NPcn01CO2sub<-subset(NPcnadd, NPcnadd$treatment=="01CO2")
NPcn05Nsub<-subset(NPcnadd, NPcnadd$treatment=="05N")
NPcn10CNsub<-subset(NPcnadd, NPcnadd$treatment=="10CN")
NPcnadd1<-rbind(NPcn01CO2sub, NPcn05Nsub,NPcn10CNsub)

NPcncontrol<-NPcn10CNsub;NPcncontrol$CO2<="N";NPcncontrol$T<="N";NPcncontrol$R<="N";NPcncontrol$D<="N";NPcncontrol$N<="N";NPcncontrol$P<="N"
NPcncontrol$treatment<="control";NPcncontrol$treat<="NNNNNN"
NPcnadd2<-rbind(NPcncontrol,NPcnadd1)
NPcninterdat<- escalc(m1i=Xe, sd1i=Se, n1i=Ne, m2i=Xc, sd2i=Sc, n2i=Nc, measure="ROM", data=NPcnadd2, append=TRUE)
summary(rma.uni(yi,vi,mods=~CO2*N, method="REML", data=NPcninterdat, digits=8))

#Rain+N
IDinterNPrn<-unique(NPn$r sources)
NPnadd<-interNP[1,]

for(i in 1:length(IDinterNPn)){
 dat.temp<-interNP[which(interNP$sources==IDinterNPn[i]),]
 if (nrow(dat.temp)==0){next}
 else if (any(dat.temp$treatment=="03R") & any(dat.temp$treatment=="05N") & any(dat.temp$treatment=="17RN")){NPnadd<-rbind(NPnadd,dat.temp)}
}

NPnadd<-NPnadd[-(1),]
NPnadd<-NPnadd[order(NPnadd$Author),]
NPn03Rsub<-subset(NPnadd, NPnadd$treatment=="03R")
NPn05Nsub<-subset(NPnadd, NPnadd$treatment=="05N")
NPn17RNsub<-subset(NPnadd, NPnadd$treatment=="17RN")
NPnadd1<-rbind(NPn03Rsub, NPn05Nsub,NPn17RNsub)
NPncontrol<-NPn17RNsub;NPncontrol$CO2<="N";NPncontrol$T<="N";NPncontrol$R<="N";NPncontrol$D<="N";NPncontrol$N<="N";NPncontrol$P<="N"
NPrncontrol$treatment<"control"; NPrncontrol$treat<"NNNNNN"
NPrnadd2<rbind(NPrncontrol,NPrnadd1)
NPrninterdat<- escalc(m1i=Xe, sd1i=Se, n1i=Ne, m2i=Xc, sd2i=Sc, n2i=Nc, measure="ROM",
data=NPrnadd2, append=TRUE)
someory(rma.uni(yi,vi,mods=-R*N, method="REML", data=NPrninterdat, digits=8))

#N+P
IDinterNPnp<-unique(NPnp$sources)
NPnpadd<-interNP[1,]
for(i in 1:length(IDinterNPnp)){
 dat.temp<-interNP[which(interNP$sources==IDinterNPnp[i]),]
 if (nrow(dat.temp)==0){next}
 else if (any(dat.temp$treatment=="05N") & any(dat.temp$treatment=="06P")&
 any(dat.temp$treatment=="21NP"))
 {NPnpadd<-rbind(NPnpadd,dat.temp)}
}
NPnpadd<-NPnpadd[-(1),]
NPnpadd<-NPnpadd[order(NPnpadd$Author),]
NPnp05Nsub<-subset(NPnpadd, NPnpadd$treatment=="05N")
NPnp06Psub<-subset(NPnpadd, NPnpadd$treatment=="06P")
NPnp21NPsub<-subset(NPnpadd, NPnpadd$treatment=="21NP")
NPnpadd1<-rbind(NPnp05Nsub, NPnp06Psub,NPnp21NPsub)
NPnpcontrol<-NPnp21NPsub; NPnpcontrol$CO2<"N"; NPnpcontrol$T<-
"N";NPnpcontrol$R<"N"; NPnpcontrol$S<"N"; NPnpcontrol$N<"N"; NPnpcontrol$P<"N"
NPnpcontrol$treatment<"control"; NPnpcontrol$treat<"NNNNNN"
NPnpadd2<-rbind(NPnpcontrol,NPnpadd1)
NPnpinterdat<- escalc(m1i=Xe, sd1i=Se, n1i=Ne, m2i=Xc, sd2i=Sc, n2i=Nc, measure="ROM",
data=NPrnadd2, append=TRUE)
someory(rma.uni(yi,vi,mods=-N*P, method="REML", data=NPrninterdat, digits=8))

####Figure 4
sCO2<-subset(natNP, natNP$treatment=="01CO2"); sT<-subset(natNP,
natNP$treatment=="02T")
sR<-subset(natNP, natNP$treatment=="03R"); sD<-subset(natNP, natNP$treatment=="04D")
sRain<-rbind(sR,sD)
sRain$dwater<-sRain$drain+sRain$ddrought
sN<-subset(natNP, natNP$treatment=="05N"); sP<-subset(natNP, natNP$treatment=="06P")

dco2yiNP <- with(sCO2, log(Xe/Xc)); dco2viNP <- with(sCO2, (1/Ne)*(Se/Xe)^2 +
(1/Nc)*(Sc/Xc)^2)
dco2rNP<-rma.uni(dco2yiNP,dco2viNP,mods=-dCO2, method="REML", data=sCO2,
digits=8); summary(dco2rNP)
someory(aov(dco2yiNP~dCO2, data=sCO2))

dTyiNP <- with(sT, log(Xe/Xc)); dTviNP <- with(sT, (1/Ne)*(Se/Xe)^2 + (1/Nc)*(Sc/Xc)^2)
dTrNP<-rma.uni(dTyiNP,dTviNP,mods=~dtemp, method="REML", data=sT, digits=8);
summary(dTrNP)
summary(aov(dTyiNP~dtemp, data=sT))

drainyiNP <- with(sRain, log(Xe/Xc)); drainviNP <- with(sRain, (1/Ne)*(Se/Xe)^2 + (1/Nc)*(Sc/Xc)^2)
drainrNP<-rma.uni(drainyiNP,drainviNP,mods=~dwater, method="REML", data=sRain, digits=8); summary(drainrNP)
summary(aov(drainyiNP~dwater, data=sRain))

dNyiNP <- with(sN, log(Xe/Xc)); dNviNP <- with(sN, (1/Ne)*(Se/Xe)^2 + (1/Nc)*(Sc/Xc)^2)
dNrNP<-rma.uni(dNyiNP,dNviNP,mods=~dN, method="REML", data=sN, digits=8); summary(dNrNP)
summary(aov(dNyiNP~dN, data=sN))

dPyiNP <- with(sP, log(Xe/Xc)); dPviNP <- with(sP, (1/Ne)*(Se/Xe)^2 + (1/Nc)*(Sc/Xc)^2)
dPrNP<-rma.uni(dPyiNP,dPviNP,mods=~dP, method="REML", data=sP, digits=8); summary(dPrNP)
summary(aov(dPyiNP~dP, data=sP))

sCO2con<-subset(conNP, conNP$treatment=="01CO2"); sTcon<-subset(conNP, conNP$treatment=="02T")

dco2yiNPcon <- with(sCO2con, log(Xe/Xc)); dco2viNPcon <- with(sCO2con, (1/Ne)*(Se/Xe)^2 + (1/Nc)*(Sc/Xc)^2)
dco2rNPcon<-rma.uni(dco2yiNPcon,dco2viNPcon,mods=~dCO2, method="REML", data=sCO2con, digits=8); summary(dco2rNPcon)
summary(aov(dco2yiNPcon~dCO2, data=sCO2con))

dTyiNPcon <- with(sTcon, log(Xe/Xc)); dTviNPcon <- with(sTcon, (1/Ne)*(Se/Xe)^2 + (1/Nc)*(Sc/Xc)^2)
dTrNPcon<-rma.uni(dTyiNPcon,dTviNPcon,mods=~dtemp, method="REML", data=sTcon, digits=8); summary(dTrNPcon)
summary(aov(dTyiNPcon~dtemp, data=sTcon))

############################# The end
Table S1
Sensitivity of plant stoichiometry to global change treatments in different ecosystems. The mean log response ratio (lnRR) with the 95% confidence intervals and number of observations in parentheses are reported for biome with the number of observations ≥ 15. CO2, Warming, Rainfall+, Rainfall-, Nitrogen+, and Phosphorus+ refer to field experiments of elevated [CO2], increasing temperature, increasing rainfall, decreasing rainfall, nitrogen fertilization, and phosphorus fertilization, respectively. 0 represents the value <0.01. lnRR significantly different from zero (P<0.05) are shown in bold.

<table>
<thead>
<tr>
<th>Ecosystem</th>
<th>CO2</th>
<th>Warming</th>
<th>Rainfall+</th>
<th>Rainfall-</th>
<th>Nitrogen+</th>
<th>Phosphorus+</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boreal forest</td>
<td>0.001±0.002</td>
<td>-0.003±0.003</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>(23)</td>
<td>(37)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperate forest</td>
<td>-0.007±0.006</td>
<td>0.002±0.002</td>
<td>/</td>
<td>0/0</td>
<td>0.012±0.017</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>(373)</td>
<td>(113)</td>
<td></td>
<td>(59)</td>
<td>(51)</td>
<td></td>
</tr>
<tr>
<td>Temperate grassland</td>
<td>-0.006±0.007</td>
<td>-0.017±0.009</td>
<td>/</td>
<td>/</td>
<td>0.031±0.013</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>(55)</td>
<td>(30)</td>
<td></td>
<td>(50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tundra</td>
<td>0.006±0.025</td>
<td>0±0.002</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>(22)</td>
<td>(134)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland</td>
<td>-0.005±0.011</td>
<td>/</td>
<td>/</td>
<td>-0.007±0.004</td>
<td>0.007±0.002</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>(39)</td>
<td>(50)</td>
<td></td>
<td>(50)</td>
<td>(23)</td>
<td></td>
</tr>
<tr>
<td>Crop</td>
<td>0±0.009</td>
<td>/</td>
<td>/</td>
<td>-0.011±0.013</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>(125)</td>
<td></td>
<td></td>
<td>(37)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[N]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boreal forest</td>
<td>-0.04±0.019</td>
<td>-0.001±0.013</td>
<td>/</td>
<td>0.042±0.023</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>(155)</td>
<td>(93)</td>
<td></td>
<td>(130)</td>
<td>(18)</td>
<td></td>
</tr>
<tr>
<td>Temperate forest</td>
<td>-0.02±0.005</td>
<td>0.02±0.008</td>
<td>0.021±0.00</td>
<td>0/0</td>
<td>0/0</td>
<td>0.074±0.074</td>
</tr>
<tr>
<td></td>
<td>(177)</td>
<td>(199)</td>
<td>(8)</td>
<td>(101)</td>
<td>(1043)</td>
<td>(51)</td>
</tr>
<tr>
<td>Tropical forest</td>
<td>-0.158±0.022</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0/0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(64)</td>
<td></td>
<td></td>
<td></td>
<td>(140)</td>
<td>(97)</td>
</tr>
<tr>
<td>Temperate grassland</td>
<td>-0.008±0.01</td>
<td>0.014±0.014</td>
<td>0.013±0.02</td>
<td>/</td>
<td>0/0</td>
<td>0.059±0.02</td>
</tr>
<tr>
<td></td>
<td>(403)</td>
<td>(100)</td>
<td>(6)</td>
<td>(786)</td>
<td>(85)</td>
<td></td>
</tr>
<tr>
<td>Tropical grassland</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>-0.1±0.074</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(95)</td>
<td>(63)</td>
<td></td>
<td>(48)</td>
<td>(44)</td>
<td></td>
</tr>
<tr>
<td>Tundra</td>
<td>-0.004±0.005</td>
<td>-0.006±0.005</td>
<td>/</td>
<td>-</td>
<td>0/0</td>
<td>0.028±0.015</td>
</tr>
<tr>
<td></td>
<td>(215)</td>
<td>(439)</td>
<td></td>
<td>(386)</td>
<td>(74)</td>
<td></td>
</tr>
<tr>
<td>Wetland</td>
<td>-0.017±0.006</td>
<td>0.008±0.014</td>
<td>/</td>
<td>/</td>
<td>0.01±0.007</td>
<td>0.012±0.02</td>
</tr>
<tr>
<td></td>
<td>(90)</td>
<td>(102)</td>
<td></td>
<td>(496)</td>
<td>(163)</td>
<td></td>
</tr>
<tr>
<td>Desert</td>
<td>-0.065±0.058</td>
<td>/</td>
<td>-0.21±0.08</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>(30)</td>
<td>(19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop</td>
<td>-0.056±0.009</td>
<td>/</td>
<td>/</td>
<td>0/0</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>(404)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[P]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boreal forest</td>
<td>0.183±0.124</td>
<td>0.005±0.023</td>
<td>/</td>
<td>/</td>
<td>0.086±0.031</td>
<td>-0.102±0.16</td>
</tr>
<tr>
<td></td>
<td>(41)</td>
<td>(33)</td>
<td></td>
<td>(22)</td>
<td>(16)</td>
<td></td>
</tr>
<tr>
<td>Ecosystem</td>
<td>C:N</td>
<td>P:N</td>
<td>N:P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperate forest</td>
<td>-0.008±0.019</td>
<td>0.029±0.035</td>
<td>0.033±0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(445)</td>
<td>(58)</td>
<td>(65)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropical forest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperate</td>
<td>-0.098±0.041</td>
<td>0.097±0.049</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grassland</td>
<td>(72)</td>
<td>(21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropical grassland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tundra</td>
<td>-0.006±0.005</td>
<td>0.027±0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland</td>
<td>-0.038±0.011</td>
<td>0.055±0.042</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop</td>
<td>-0.017±0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boreal forest</td>
<td>0.071±0.041</td>
<td>-0.012±0.014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperate forest</td>
<td>0.028±0.009</td>
<td>-0.016±0.01</td>
<td>0±0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(431)</td>
<td>(87)</td>
<td>(55)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropical forest</td>
<td>0.224±0.033</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperate</td>
<td>0.003±0.01</td>
<td>0.045±0.039</td>
<td>0±0.041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grassland</td>
<td>(221)</td>
<td>(37)</td>
<td>(26)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tundra</td>
<td>0.037±0.017</td>
<td>0.047±0.023</td>
<td>0.053±0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland</td>
<td>0.047±0.02</td>
<td></td>
<td>-0.163±0.098</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop</td>
<td>0.018±0.012</td>
<td></td>
<td>-0.178±0.045</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desert</td>
<td>-0.045±0.037</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N:P</td>
<td>-0.062±0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperate</td>
<td>0.496±0.103</td>
<td>0.013±0.083</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grassland</td>
<td>(54)</td>
<td>(44)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropical grassland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tundra</td>
<td>-0.004±0.005</td>
<td>-0.068±0.029</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S1
The global distribution of study sites included in the meta-analysis.
Figure S2
Natural log response ratios of plant nutrients and their stoichiometric ratios to six global change treatments. a, Log response ratios of plant concentrations of carbon ([C]), nitrogen ([N]), and phosphorus ([P]). b, Log response ratios of C:N, C:P, and N:P. Circles are for results in natural environments with grey and green representing insignificant ($P > 0.05$) and significant ($P \leq 0.05$) difference between the log response ratio and zero, respectively. Triangles are for results in controlled environments with grey and pink representing insignificant ($P > 0.05$) and significant ($P \leq 0.05$) difference between the log response ratio and zero, respectively. Error bars are the 95% confidence intervals for the mean. CO2, Warming, Rainfall+, Rainfall-, Nitrogen+, and Phosphorus+ represent elevated [CO2], increasing temperature, increasing rainfall, decreasing rainfall, nitrogen fertilization, and phosphorus fertilization, respectively. Overall response ratios were calculated by pooling all data for each of the six studied plant nutrient variables. The numbers out- and inside parentheses represent the numbers of observations for experiments in natural and controlled environments, respectively.
Figure S3

Natural log response ratios of plant nutrients and their stoichiometric ratios to combined global change treatments. The uses of symbols, colours, error bars, and abbreviations are same as in Fig. 2. Only combined experiments with $n \geq 15$ are included. Abbreviations are same as in Supplementary Fig. S2.
Figure S4
Parameter estimates (mean and the 95% confidence intervals) for two-way interaction terms between global change treatments. The parameters are estimated by fitting generalized linear mixed-effect models. Insignificant interaction terms indicate that treatment effects are additive. Only studies reporting single and two-factor experiments are included in these analyses. Abbreviations are same as in Supplementary Fig. S2.
Figure S5

Sensitivities of natural log response ratios to quantities of global change treatments. The uses of symbols, colours, error bars, and abbreviations are same as in Fig. 2. Because application rates of water, nitrogen and phosphorus fertilization can not be standardized to same units in controlled environments, only the responses to elevated [CO₂] and warming treatments in controlled environments are presented. Abbreviations are same as in Supplementary Fig. S2.
Figure S6
Relationships between N:P response ratios and aridity. Aridity index, 1-the ratio of precipitation to potential evapotranspiration, for each site of manipulation experiments is derived from the CGIAR-CSI (http://www.cgiar-csi.org/data/global-aridity-and-pet-database). The fitted regression line for Rainfall+ is significantly quadratic ($y = -0.12 + 0.21x - 0.087x^2$, $n = 116$, $R^2 =0.31$, $P =0.003$). The fitted regression line for Rainfall- is not significant ($y = -0.052 + 0.11x$, $n =26$, $R^2 =0.28$, $P =0.15$).

![Graph showing the relationships between N:P response ratios and aridity](image-url)
Figure S7
Response ratios of plant [C] among plant functional types. The symbol with error bar shows the mean response ratio with the 95% confidence intervals. Dec. ang. and Evergr. ang. refer to deciduous woody angiosperms and evergreen woody angiosperms, respectively. Abbreviations are same as in Supplementary Fig. S2.
Figure S8
Response ratios of plant [N] among plant functional types. Abbreviations are same as in Supplementary Fig. S2.
Figure S9
Response ratios of plant [P] among plant functional types. Abbreviations are same as in Supplementary Fig. S2.
Figure S10
Response ratios of plant C:N among plant functional types. Abbreviations are same as in Supplementary Fig. S2.
Figure S11
Response ratios of plant C:P among plant functional types. Abbreviations are same as in Supplementary Fig. S2.
Figure S12
Response ratios of plant N:P among plant functional types. Abbreviations are same as in Supplementary Fig. S2.
Figure S13
C₃ (triangle) and C₄ (circle) plant response ratios of plant N:P to global changes.
Abbreviations are same as in Supplementary Fig. S2.
Supplementary references

Alberton, O., Kuyper, T. W. & Gorissen, A. Competition for nitrogen between *Pinus sylvestris* and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2 *Plant Soil* 296, 159-172 (2007).

Barbehenn, R. V., Chen, Z., Karowe, D. N. & Spickard, A. C\(_3\) grasses have higher nutritional quality than C\(_4\) grasses under ambient and elevated atmospheric CO\(_2\)}. Global Change Biol. 10, 1565-1575 (2004).

Evans, S. E. *Microbial and biogeochemical responses to changing precipitation patterns in grassland ecosystems*, COLORADO STATE UNIVERSITY, (2012).

566 Hartwig, U. A. *et al.* Due to symbiotic N2-fixation, five years of elevated atmospheric pCO2 had no effect on the N concentration of plant litter in fertile, mixed grassland. *Plant Soil* 224, 43-50 (2000).

Ibrahim, M. H., Jaafar, H. Z. E., Rahmat, A. & Rahman, Z. A. The relationship between phenolics and flavonoids production with total non structural carbohydrate and

Judd, T. S., Bennett, L. T., Weston, C. J., Attiwill, P. M. & Whiteman, P. H. The response of growth and foliar nutrients to fertilizers in young *Eucalyptus globulus*

Klus, D. J., Kalisz, S., Curtis, P. S., Teeri, J. A. & Tonsor, S. J. Family- and population-
level responses to atmospheric CO2 concentration: Gas exchange and the allocation of C,
N, and biomass in Plantago lanceolata (Plantaginaceae). Am. J. Bot. 88, 1080-1087

Knepp, R. G. et al. Elevated CO2 reduces leaf damage by insect herbivores in a forest

Foliage of oaks grown under elevated CO2 reduces performance of Antheraea polyphemus

Knops, J. M. H., Naeemw, S. & Reich, P. B. The impact of elevated CO2, increased
nitrogen availability and biodiversity on plant tissue quality and decomposition. Global

Kogawara, S., Norisada, M., Tange, T., Yagi, H. & Kojima, K. Elevated atmospheric
CO2 concentration alters the effect of phosphate supply on growth of Japanese red pine

Koike, T. et al. Comparison of the photosynthetic capacity of siberian and Japanese birch

Koike, T. et al. Defense characteristics of seral deciduous broad-leaved tree seedlings

Komatsu, M. et al. Photosynthetic downregulation in leaves of the Japanese white birch
grown under elevated CO2 concentration does not change their temperature-dependent

Koopmans, C. J., Tietema, A. & Boxman, A. W. The fate of 15N enriched throughfall in
two coniferous forest stands at different nitrogen deposition levels. Biogeochemistry 34,

Koopmans, C. J., vanDam, D., Tietema, A. & Verstraten, J. M. Natural 15N abundance in

Korner, C. & Diemer, M. Evidence that plants from high-altitudes retain their greater

Korner, C. & Miglietta, F. Long-term effects of naturally elevated CO2 on Mediterranean

Kornfeld, A. et al. Respiratory flexibility and efficiency are affected by simulated global
change in Arctic plants. New Phytol. 197, 1161-1172 (2013).

Kostiainen, K., Jalkanen, H., Kaakinen, S., Saranpaa, P. & Vapaavuori, E. Wood
properties of two silver birch clones exposed to elevated CO2 and O3. Global Change

Kostiainen, K. et al. Effect of elevated [CO2] on stem wood properties of mature Norway
spruce grown at different soil nutrient availability. Global Change Biol. 10, 1526-1538
(2004).

Kostiainen, K. et al. Stem wood properties of mature Norway spruce after 3 years of
continuous exposure to elevated [CO2] and temperature. Global Change Biol. 15, 368-
379 (2009).

Kostiainen, K. et al. Wood properties of trembling aspen and paper birch after 5 years of

Kou, L.-l. et al. The effect of N, P and K fertilizer on the nutrient uptake of Smooth

Lippert, M., Steiner, K., Pfirrmann, T. & Payer, H. D. Assessing the impact of elevated
O₃ and CO₂ on gas exchange characteristics of differently k supplied clonal Norway
spruce trees during exposure and the following season. Trees 11, 306-315 (1997).
Litaor, M. I., Seastedt, T. R. & Sackett, L. C. Nutrient status in alpine soils of the
colorado front range using the nitrogen/phosphorus ratio index. Soil Sci. Soc. Am. J. 72,
Liu, D. Y. & Chun, S. C. Responses of marsh wetland plant Calamagrostis angustifolia
Liu, J., Han, Y. & Cai, Z. C. Decomposition and products of wheat and rice straw from a
Liu, J. et al. Nitrogen to phosphorus ratios of tree species in response to elevated carbon
dioxide and nitrogen addition in subtropical forests. Global Change Biol., n/a-n/a (2012).
Liu, J., Zhang, D., Zhou, G. & Duan, H. Changes in leaf nutrient traits and
photosynthesis of four tree species: effects of elevated CO₂, N fertilization and canopy
Liu, J. X. et al. Nitrogen to phosphorus ratios of tree species in response to elevated
carbon dioxide and nitrogen addition in subtropical forests. Global Change Biol. 19, 208-
216 (2013).
Liu, J. X. et al. Photosynthesis acclimation, leaf nitrogen concentration, and growth of
four tree species over 3 years in response to elevated carbon dioxide and nitrogen
Liu, J. Z., Ge, Y. M., Zhou, Y. F. & TiAng, M. Effects of elevated CO₂ on growth and
nutrient uptake of Eichornia crassipe under four different nutrient levels. Water Air Soil
Liu, L. L. et al. Enhanced litter input rather than changes in litter chemistry drive soil
Liu, L. L., King, J. S. & Giardina, C. P. Effects of elevated concentrations of atmospheric
CO₂ and tropospheric O₃ on leaf litter production and chemistry in trembling aspen and
Liu, L. L., King, J. S. & Giardina, C. P. Effects of elevated atmospheric CO₂ and
tropospheric O₃ on nutrient dynamics: Decomposition of leaf litter in trembling aspen and
decomposition to increased soil nutrients and water between two contrasting grassland
Liu, P., Huang, J. H., Sun, O. J. & Han, X. G. Litter decomposition and nutrient release
as affected by soil nitrogen availability and litter quality in a semiarid grassland
Liu, S., Guo, Z. L., Li, T., Huang, H. & Lin, S. J. Photosynthetic efficiency, cell volume,
and elemental stoichiometric ratios in Thalassiosira weissflogii under phosphorus

Llorens, L. Plant ecophysiological responses to experimentally drier and warmer conditions in European shrublands, (2003).

1139 Oechel, W. C. Final technical report: Response of Mediterranean-type ecosystems to elevated atmospheric CO$_2$ and associated climate change. (San Diego State University Foundation (US), 2002).

Pinto, H., Tissue, D. T. & Ghannoum, O. Panicum milioides (C3-C4) does not have improved water or nitrogen economies relative to C3 and C4 congeners exposed to industrial-age climate change. *J. Exp. Bot.* **62**, 3223-3234 (2011).

Sator, C. in *Proceedings of the 10th International Rapeseed Congress*. 0.

Stiling, P. & Cornelissen, T. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes

1474 Sun, Y. C., Cao, H. F., Yin, J., Kang, L. & Ge, F. Elevated CO$_2$ changes the interactions between nematode and tomato genotypes differing in the ja pathway. *Plant Cell Environ.* **33**, 729-739 (2010).
1492 Tang, Q. Y. et al. Rice varietal difference in sheath blight development and its association with yield loss at different levels of N fertilization. Field Crops Res. 102, 219-227 (2007).

Xu, C.-Y., Salih, A., Ghannoum, O. & Tissue, D. T. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in CO2 and temperature. J. Exp. Bot. 63, 5829-5841 (2012).

Yang, L. X. *et al.* Seasonal changes in the effects of free-air CO2 enrichment (FACE) ion nitrogen (N) uptake and utilization of rice at three levels of N fertilization. *Field Crops Res.* **100**, 189-199 (2007).

