
Image 2: Imaging of glial cell activation and white matter integrity in brains of active and recently retired National Football League players.


Image 4: Neuroinflammation in temporal lobe epilepsy measured using positron emission tomographic imaging.

Image 5: GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer's disease implicates microglial activation gene IL1RAP.

Image 6: Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F]FEMPA in Alzheimer's disease patients and control subjects.

Image 7: In Vivo Assessment of Brain White Matter Inflammation in Multiple Sclerosis with (18)F-PBR111 PET.


Image 9: In vivo radioligand binding to translocator protein correlates with severity of Alzheimer's disease.

Image 10: Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [11C]DAA1106.

Image 11: In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease.

Image 12: Neuroinflammation in the living brain of Parkinson's disease.


Image 14: Imaging glial cell activation with [11C]-(R)-PK11195 in patients with AIDS.

Image 15: Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]-PK1195.


Image 17: The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity.


Image 19: In vivo (R)-[11C]PK11195 PET imaging of 18kDa translocator protein in recent onset psychosis.


Image 22: Neuroinflammation in temporal lobe epilepsy measured using positron emission tomographic imaging.

Image 23: GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer's disease implicates microglial activation gene IL1RAP.

Image 24: Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F]FEMPA in Alzheimer's disease patients and control subjects.

Image 25: In Vivo Assessment of Brain White Matter Inflammation in Multiple Sclerosis with (18)F-PBR111 PET.


Image 27: In vivo radioligand binding to translocator protein correlates with severity of Alzheimer's disease.

Image 28: Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [11C]DAA1106.

Image 29: In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease.

Image 30: Neuroinflammation in the living brain of Parkinson's disease.


Image 32: Imaging glial cell activation with [11C]-(R)-PK11195 in patients with AIDS.

Image 33: Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]-PK1195.


Image 35: The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity.


Image 37: In vivo (R)-[11C]PK11195 PET imaging of 18kDa translocator protein in recent onset psychosis.


Image 40: Neuroinflammation in temporal lobe epilepsy measured using positron emission tomographic imaging.

Image 41: GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer's disease implicates microglial activation gene IL1RAP.

Image 42: Positron emission tomography imaging of the 18-kDa translocator protein (TSPO) with [18F]FEMPA in Alzheimer's disease patients and control subjects.

Image 43: In Vivo Assessment of Brain White Matter Inflammation in Multiple Sclerosis with (18)F-PBR111 PET.


Image 45: In vivo radioligand binding to translocator protein correlates with severity of Alzheimer's disease.

Image 46: Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [11C]DAA1106.

Image 47: In vivo changes in microglial activation and amyloid deposits in brain regions with hypometabolism in Alzheimer's disease.

Image 48: Neuroinflammation in the living brain of Parkinson's disease.


Image 50: Imaging glial cell activation with [11C]-(R)-PK11195 in patients with AIDS.

Image 51: Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]-PK1195.


Image 53: The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity.