Visual communication of science Creating effective figures

We'll discuss these types of visual representations

Data figures

Numerical data translated into abstractions (shapes, symbols) in primary research. Can include charts, graphs, imaging, and computer-generated scientific models.

Figurative illustrations

Illustrated process or phenomenon. Can appear as summary figures in news and analysis pieces, press releases, grant applications, websites and posters.

Part 1 Best practice for data figures

Group exercise Compare length of bars

Relative magnitude estimation [Mackinlay 86]

Remember: What is encoded by you must be decoded by your audience

Considered design changes can improve comprehension

Considered design changes can improve comprehension

Same line style is used for different purposes.

Visual distinctions are made by assigning different styles to axes, contours and cluster boundaries.

Gestalt principles Relationship of elements

Create clear connections using proximity and enclosure.

Objects placed closed to one another are seen as going together.

Salience

Setting an object apart from its surroundings to create contrast

Color name	RGB (1–255)] % Map salience
Black	0, 0, 0	to relevance
Orange	230, 159, 0	၀ တွ တိတ်သိတ် ၀၀
Sky blue	86, 180, 233	
Bluish green	0, 158, 115	
Blue	0, 114, 178	
Vermillion	213, 94, 0	0 0

Simplify and edit

Like good writing, figures are better when clear and concise

remove redundant elements

Color is subjective

same color looks different different color looks the same same color looks different

Color can misrepresent data

Avoid the rainbow

Shifts shown in circles do not match change in value Gradation from 10-90% black produces even transitions

Color scales with sharp transitions can exaggerate data ranges.

When colors have uneven saturation, data can be underrepresented

Color Choosing a color palette

When mapping color to quantitative data: seek help

Experts have done the work for you:

Color Brewer: http://colorbrewer2.org NASA: http:/colorusage.arc.nasa.gov/ColorTool.php Viridis (R package for Python matplotlib library)

For categorical data: do it yourself

Spiral technique: use a color picker to select a palette that varies in hue, saturation and brightness.

Color blindness

Image with green replaced by turquoise

Natural color

images

Simulated colors as seen by:

deuteranope

protanope

Color	Color name	RGB (1-255)	CMYK (%)	Р	D
	Black	0, 0, 0	0, 0, 0, 100		
	Orange	230, 159, 0	0, 50, 100, 0		
	Sky blue	86, 180, 233	80, 0, 0, 0		
	Bluish green	0, 158, 115	97, 0, 75, 0	1	-
	Yellow	240, 228, 66	10, 5, 90, 0		
	Blue	0, 114, 178	100, 50, 0, 0		
-	Vermillion	213, 94, 0	0, 80, 100, 0		
	Reddish purple	204, 121, 167	10, 70, 0, 0		

Colorblind friendly color palette

Data density

Avoid overlapping data. Use small multiples.

Avoid symbol overload. Use multiple views of the same data for clarity.

Resolution

Resolution is measured by calculating the number of pixels within a linear unit rather than area.

Adding pixels after an image is created is called **artificial enlargement**. Software will insert pixels with estimated data, not real data. Capture images in the highest resolution possible from the beginning.

Plan for it in your experimental set-up.

Resolution

E

High resolution images are needed to properly communicate your research.

·journal covers press releases · journalistic outputs websites

Labels, arrows and grids

Use consistent line lengths and angles with uniform spacing. A grid is helpful.

Use arrows when the relationship is directional, not simply as a pointer.

Part 2 Figurative illustrations

Figurative illustration: a case study Nature expert analysis piece (News & Views)

IMMUNOLOGY

Chronic effects of acute infections

Acute infection of mice with an intestinal pathogen leads to long-lasting inflammation that is maintained by intestinal microorganisms. This observation reveals a path by which infection history can affect long-term immune function.

NICOLA HARRIS

Ur bodies' history of infections shapes our immune system and can influence the development of subsequent diseases, including inflammatory bowel disease and autoimmune disorders¹. It has also been postulated² that individuals' past infections can undermine vaccine programmes, particularly in developing nations. For certain cases, such as infection with *Streptococcus pyogenes* bacteria and rheumatic heart disease, this link can be explained by the presence of similar antigens (proteins against which the immune system reacts) in both the pathogen and the host³. Writing in *Cell*, Morais da Fonseca *et al.*⁴ map a different pathway by which infections alter immune status. The authors observe that mice infected with the common intestinal bacterial pathogen *Yersinia pseudotuberculosis* have an altered long-term ability to react to experimental antigens that mimic human exposure to food or oral vaccines.

Morais da Fonseca and colleagues show

Step 1 Establish information hierarchy

1. Purpose

What is the purpose of the figure?

2. Key elements

What are the 3 or 4 most essential things to show?

3. Useful context

Other information that is essential for understanding?

4. Details

Can be added then pared back

Step 1 Establish information hierarchy

1. Purpose What is the purpose of the figure?	to show immune response to intestinal antigens		
2. Key elements What are the 3 or 4 most essential things to show?	animal, intestines, lymphatics		
3. Useful context Other information that is essential for understanding?	intact versus leaky lymphatics		
4. Details Can be added then pared back	dendritic cell, inflamed node, leaky vessel		

Step 2 Initial sketch (pencil strongly encouraged!)

Pencil sketch from expert author (editor notes in blue and red pen)

Step 3 Create and refine in illustration software

Final published piece after editing and refining

Further reading The collected Points of View

available here:

bit.ly/21kH6pO

\$7.99

Many figures in this presentation are from the Points of View column in *Nature Methods*. Special thanks to Bang Wong and Martin Krzywinski.

Further reading

Public Understanding of Science (journal essay)

A framework for visual communication at Nature doi: 10.1177/0963662516640966

Describes the kinds of visuals that appear in Nature - such primary research, expert analysis, and journalism - how they differ and how we create and publish them.

Thank you :) **akellybkrause**