
In 1917, as war was tearing its 
way across Europe, a fascinating 
scientific observation was being 
made. The German physician 
Alfred Nissle had been looking for 
novel therapies to tackle enteric 
infections, which in this pre-anti-
biotic era represented an enormous 
burden on troops. He noted that 
one soldier in particular, who had 
participated in a military campaign 
in the Balkans, proved stubbornly 
resistant to dysentery when many 
of his comrades had been laid low 
by the disease. Speculating that a 
component of this soldier’s intestinal 
microbiota might be responsible 
for this resistance, Nissle acquired 
stool samples and was able to isolate 
a strain of bacteria that came to be 
known as Escherichia coli Nissle 
1917. Laboratory testing, as well as 
some self-experimentation on the 
part of Nissle, showed that this novel 
strain of E. coli was indeed able to 
antagonise pathogenic bacteria and 
it soon entered clinical practice. 
Although his identity is lost to 
history, the soldier’s donation of his 

unique E. coli strain is still used to 
this day as the active component of 
the probiotic Mutaflor.

In many ways, the findings of 
Nissle were built on earlier concepts 
articulated by the ‘father’ of cellular 
immunology Élie Metchnikoff, 
who in a monograph in 1910 had 
lauded the consumption of soured 
milk (rich in bacteria) as a means 
to stave-off infectious disease and 
enhance human longevity. Indeed, 
peasants from the Balkans and 
Caucasus had long-been famous 
not only for their centenarians but 
also for millennia-old traditions of 
yoghurt-making. However, while 
it seemed that certain strains of 
bacteria could have beneficial prop-
erties on their host, perhaps in part 
through their direct antagonism of 
enteric pathogens, the mechanistic 
basis of these remarkable effects 
were almost wholly unknown. 
Arguably, the first in-roads into 
this question were made in the 
mid-1920s, in Belgium, by an 
often-overlooked early pioneer 
of microbiology — André Gratia. 

Along with his colleagues, most 
notably Sarah Dath, Gratia observed 
antagonism between co-cultures of 
different strains of E. coli. This effect 
was attributed to a secreted factor, 
which came to be known as ‘colicin’. 
This protein now represents the first 
described member of an unrelated 
family of narrow-spectrum, bacteri-
ally-produced antibiotics known as 
‘bacteriocins’.

Another important step in 
understanding the role played by 
the host’s microbiota in resistance to 
enteropathogenic bacteria was made 
in the 1950s, by Marjorie Bohnhoff 
and colleagues at the University 
of Chicago, and subsequently in 
the early 1970s by Dirk van Waaij 
and colleagues in the Netherlands. 
Secondary infections are a common 
occurrence following a course of 
antibiotics, suggesting that some 
perturbation of the microbiota 
might be responsible. In order to 
model this phenomenon, these 
studies found that mice that had 
their microbiota heavily-depleted 
by antibiotics were drastically more 
susceptible to oral challenge with 
even mildly pathogenic strains of 
Salmonella or E. coli. A 1971 paper 
by van Waaij and colleagues was 
especially important for its coining 
of the term ‘colonization resistance’ 
and placing it into a quantitative 
framework.

The host’s microbiota can 
manifest colonization resistance 
through a number of potential 
mechanisms, for example, ‘passively’ 
by out-competing bacteria for 
space and trophic resources, or 
more actively by the generation of 
bacteriocidal factors. Three key 
papers in 2007 illuminated different 
aspects of colonization resistance. 
The probiotic strain Lactobacillus 
salivarius UCC118 is known to pro-
duce the bacteriocin Apb118. Conor 
Gahan and colleagues observed that 
this probiotic strain could protect 
mice against infection with Listeria 
monocytogenes and this effect was 
wholly dependent on the production 
of Apb118. However, L. salivarius 
UCC118 also conferred protection 
against a strain of Salmonella 
resistant to Apb118, suggesting 
that colonization resistance by this 
probiotic is more multi-faceted than 
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Mechanisms of 
colonization resistance
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Eline Klaassens and colleagues applied a 
metaproteomics approach to uncultured faecal 
microbiota, providing the first insights beyond 
taxonomic identification. This was followed by 
numerous studies using ’omics methods, such as 
metabolomics and metatranscriptomics, as well as 
the development of multi-omics pipelines; methods 
that are still uncovering the functions of the 
microbiota today.
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simply the production of a bacte-
riocin. A second pair of unrelated 
papers set out to understand how 
enteropathogens could overcome 
colonization resistance. In separate 
mouse studies and using different 
enteropathogens (Citrobacter roden-
tium or Salmonella), it was shown 
that intestinal inflammation altered 
the composition of the host’s micro-
biota and made them susceptible to 
colonization by the invading bacte-
ria. In both cases the bacteria needed 
to be able to elicit gut inflammation 
in order to establish themselves — in 
other words, this appeared to be a 
case of the enteropathogen co-opting 
the host’s immune response to its 
advantage.

Colonization resistance has 
proved to be a useful model for 
understanding the dynamics of 
microbial communities in the gut 
and other barrier surfaces, such as 
the skin, however in one sense it is 
strikingly similar to the much earlier 
ecological concept of ‘allelopathy’. 
Initially outlined in the 1930s to 
describe interactions between 
certain plant species, allelopathy was 
later broadened to describe the sup-
pression of any competitor organism 

by another through the generation 
of biologically active factors.

As we teeter towards the dangers 
a post-antibiotic era, further insights 

from the study of colonization resist-
ance could offer the hope of novel 
antimicrobial therapies.

Zoltan Fehervari, Nature Immunology
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