
Supplementary information to:

A road map to improve
software sharing practices
A Comment published in Nature 646, 284–286 (2025)
https://doi.org/10.1038/ d41586-025-03196-0

Roberto Di Cosmo, Sabrina Granger, Konrad Hinsen, Nicolas Jullien, Daniel Le Berre, Violaine Louvet, Camille Maumet,
Clémentine Maurice, Raphaël Monat & Nicolas P. Rougier

This Supplementary information comprises:

1. Supplementary Table S1
2. Supplementary Table S2

Setting the agenda in research

Comment

Supplementary information  |  Nature | 1 

Supplementary Information to:
A road map to improve software sharing practices

Authors
Roberto Di Cosmo1,2, Sabrina Granger6, Konrad Hinsen3,4, Nicolas Jullien5,
Daniel Le Berre7, Violaine Louvet8, Camille Maumet9, Clémentine Maurice10,
Raphaël Monat10 & Nicolas P. Rougier11,∗
∗ Corresponding author: nicolas.rougier@inria.fr

Affiliations
1 Inria Paris, Paris, France
2 Universite Paris Cité, Paris, France
3 Centre de Biophysique Moléculaire (CNRS), Orléans, France
4 Synchrotron SOLEIL, Saint Aubin, France
5 IMT Atlantique, Brest, France
6 Inria Lyon, Lyon, France
7 CRIL, Université d’Artois, Lens, France
8 Laboratoire Jean Kuntzmann, Grenoble, France
9 Inria, Univ Rennes, CNRS, Inserm, Rennes, France
10 Univ. Lille, CNRS, Inria, UMR 9189 CRIStAL, Lille, France
11 Centre Inria de l’université de Bordeaux, Bordeaux, France

(Continues on next page)

Table S1: Create, curate, collaborate
Many researchers and engineers write code for their research projects yet
have not received specialized training in software engineering. These steps
should be taken, gradually, to ensure software is suitably shared and archived.

 Mandatory Recommended Optional

Make software
open source:
ensure that
everyone can
inspect and use the
software

Publish code on a
public platform

Ensure that it is
saved in a
dedicated archive
such as Software
Heritage or Zenodo

Choose an open
licence*

Declare authors
and rightholders

Put software under
version control

Document:
make the code
intelligible to others

 Use meaningful
names for
everything

Explain how the
code works

Provide examples
and tutorials

For larger projects,
provide a reference
documentation
explaining how to use a
given function, in what
conditions, what are the
arguments, their type
and their meaning, etc.

Execute:
enable others to
run the software

 Provide a list of
software and
hardware
dependencies. For
example, the
operating system
on which it can be
run and any other
software or
libraries that need
to be installed prior
to usage.

Provide a ready-to-run
computational
environment**, a test
suite, and real-life usage
examples

Collaborate:
interact with a
community of users

 Have a strategy to
effectively deal with any
future contributions from
collaborators

Describe the limits that
the developers have
decided concerning
maintenance, feature
addition and support

Respond to questions

Engage in active
community building, such
as explaining to fellow
researchers and
engineers how to
contribute

*Without a licence, the default copyright laws apply and no one can reproduce, distribute or
create derivative works. This is the reason why an open-source licence is strongly
recommended even if there is no legal obligation to do so.

**This follows an initiative started by some computer science communities in 2011, who
have put in place an artifact evaluation process aiming at ensuring computational
reproducibility of software-based empirical evidence1. The Association for Computer
Machinery (ACM) has put this practice into policy since 2016.

1. Krishnamurthi, S. Artifact evaluation for software conferences. ACM SIGPLAN Notices
48(4S), 17–21 (2013)

Table S2: Team up for good
Good practices need support and involvement from all actors of the scientific
ecosystem.

Research institutions, funders, libraries and publishers have more substantial
means at their disposal to support research software than research groups —
and so they also have more responsibility.

 Mandatory Recommended Optional

Research
institutions

Provide the
infrastructure and
human resources
required for software
development

Recognize the work
software
development and
maintenance
involves; embed it in
employee
assessments

Consider software as
a valuable research
output, in the same
way as journal
articles are, for
example in
researchers’
production/career
evaluation

Host software
developments on
institutional platforms

Provide training in
software engineering

Funders Provide durable
financial support for
software research,
development and
maintenance,
beyond the cycle of
research grants. The
Chan Zuckerberg
Foundation, for
example, has made
such grants available

Add reproducibility
as a criterion for
continued funding

Facilitate
collaborations
through specific
funding schemes

Libraries Organize, curate
and maintain
software metadata
and archives

Create reference
tools addressing the
specificities of
software (evolution,
authorship, ...)

Build catalogs of
software to ensure
findability, visibility
and accessibility

Publishers Following the push
for open science,
mandate free and
open-source
software for all
published research

Archive the version
of software
associated with
publications

Review software

