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DECODING THE GENOME

Scientists are seeking to decipher the role of non-coding DNA in the human
genome, helped by a suite of artificial-intelligence tools. By Jeffrey M. Perkel

n1862, Victor Hugoreportedly wrote to his
publisher to ask how his newly published
novel Les Misérables was selling, with asin-
gle character query: “?” The response: “1”
This story of one of the world’s most
concise correspondences is apocryphal. But
some genome-focused artificial intelligence
(Al) systems can, like the French writer’s pub-
lisher, respond meaningfully to equally short
prompts.

Instead of the detailed queries required to
use the chatbot ChatGPT effectively, Evo, an Al
model trained onsome 300 billion nucleotide
bases, including 80,000 microbial whole-ge-
nome sequences, will — prompted with ‘# —
dream up a new sequence of mobile DNA. It
does so on the basis of other such biological
systems that the model has been exposed to

(see go.nature.com/3jvp922). Given aprompt
such as ‘030’, an Al tool called regLM can spit
out 200-base sequences that are predicted
to exhibit regulatory activity in any of three
human cell lines (go.nature.com/4jpttm8).

Evo and regLM are part of a fast-growing
suite of tools that aim to internalize, decode,
interpret and build on the grammar of the
genome — especially the vast portion that
does not code for proteins. Think AlphaFold,
but for regulatory DNA, which are sequences
that control gene expression.

When Google DeepMind released
AlphaFold in 2020, the company claimed it
had solved a decades-old ‘grand challenge’
in biology — predicting a protein’s 3D shape
fromits sequence alone. But the non-coding
fraction of the genome could prove to be an

evengrander challenge.

A given sequence of amino acids will
generally fold into the same shape, whatever
the cellular context. That predictability is
not true of the genome, in which short, func-
tional sequence motifs — gene promoters
and enhancers, transcription start and stop
sitesand so on — canbescattered across long
stretches of seemingly purposeless DNA.
These motifs might overlap, interact over
long distances, bind to competing protein
factors or respond to signals that are only
present in specific cells or at certain times in
development. They are also tightly wrapped
within chromatin, acomplex of DNA and pro-
tein, which might be more or less accessible
to external proteins depending on what the
cellis doing.
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“How proteins are encoded in the genome,
the code of how genes are expressed, when
andwhere, how much —is one of the most fas-
cinating problemsinbiology,” says Stein Aerts,
acomputational biologist at the VIB Center for
Al & Computational Biology and the Catholic
University of Leuven (KU Leuven) in Belgium.
But with training, Al tools can detect subtle
differences between sequences and predict
whatthey doand how they behave, identifying
crucial motifs and even estimating the impact
of altering them. From there, Al models can
attempt to predict the physiological impact
of genetic variants and even guide the design
of new sequences with specified functions.

These tools are not perfect, and researchers
cannot even agree on how best to assess their
performance. But that makes the field excit-
ing. “It’s so clear thatit’s a solvable problem,”
says Julia Zeitlinger, a developmental and
computational biologist at the Stowers Institute
for Medical Research in Kansas City, Missouri,
who developed an Al model called BPNet and
uses it to decode the mechanistic sequence
rulesofgeneregulation, “butit’s not clearhow”.

Of puppies and puffins

DeepSEA, one of the first genomic Al tools,
was published' ten years ago this month by
computational biologists Jian Zhou and Olga
Troyanskaya at Princeton University in New
Jersey.

DeepSEA is a convolutional neural net-
work (CNN) — the same kind of deep-learning
architecture used to teach computers to clas-
sify images as, say, a cat or a dog. Zhou and
Troyanskaya trained a model on epigenetics
data, including transcription-factor binding,
chromatinaccessibility and histone modifica-
tions, fromapublicresearch project called the
Encyclopedia of DNA Elements (ENCODE). The
model learnt to predict the presence of such
featuresin1,000-base segments of DNA it had
never encountered.

DeepSEA’s training enabled it to tease
apart the biological consequence and
severity of sequence variants associated
with human disease. For instance, one
breast-cancer-associated sequence variant
called rs4784227 seems to strengthen the
binding of a DNA-binding protein called
FOXAI, whereas a variant associated with the
blood condition a-thalassemia creates a pos-
sible binding site for GATAL, a transcription
factorinvolved in blood-cell development.

Since then, the field has exploded. David
Kelley, a principal investigator at the bio-
technology company Calico Life Sciences in
South San Francisco, California, has created
or co-created multiple Al models, many with
canine-inspired names. These include Akita®
(for predicting 3D genome folding), Basset®
and Basenji* (for regulatory-sequence predic-
tion) and Borzoi®, which predicts gene expres-
sionacross the length of agene.
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These models raised a litter of variants:
Basset begat Malinois, and Borzoi begat
Scooby. Other researchers have built their
own (non-canine) models including Puffin,
ChromBPNet and more.

Not all are CNNs. Enformer — a model that
predictsbothgene expression and epigenetic
data over long distances — and Borzoi, for
instance, “use both convolution blocks and
transformer blocks”, says Kelley, whose lab-
oratory developed both models. “The convo-
lutionblocks are great for capturing the local
sequence patterns, and then the transformer

“There’s just somany
different biochemical
mechanisms that could
happenonDNA.”

blocks helplook around alarger region to con-
sider the local patterns in a broader context
before predicting the data.” But whatever the
architecture, they come in two basic forms,
says Anshul Kundaje, who researches com-
putational genomics at Stanford University
in California. Supervised and sequence-to-
function models are trained on functional
genomic data— gene expression or chromatin
accessibility, for instance — and learn to pre-
dictthe function of DNA sequences they have
never encountered. Often working at or near
single-nucleotide resolution, these models
can identify key motifs, such as functionally
important protein-binding sites, and predict
the significance of altering them. DeepSEA is
one; Kundaje’s ChromBPNet, which predicts
regions of chromatin accessibility, another.
The other class is unsupervised or self-su-
pervised ‘genomic language models’ (gLMs).
Like ChatGPT, they are trained on vast quan-
tities of text — in this case, genomic sequence

data — and are tasked with either predicting
the next base (or ‘token’) in a sequence or fill-
ing in missing bases on the basis of surround-
ing context. These models “are not trying to
predict the activity of asequence, they’retry-
ingto predict the composition of asequence”,
says Avantika Lal, amachine-learningscientist
atbiotechnology firm GenentechinSouthSan
Francisco.

With machine-learning scientist Gokcen
Eraslan and their colleagues at Genentech,
Lal co-developed reglLM, a language model
that they trained by labelling regulatory
sequences with succinct markers of activity®
— for instance, ‘O4<sequence>’ to indicate
strong expression in one cell line and low
activityinanother. The modelis therefore not
strictly unsupervised, says Eraslan — he callsita
‘function-to-sequence’ model. But those same
labels canthenbe used to promptregLMto cre-
atenew sequences with predicted behaviours.

Evo 2, announced in February’, was trained
on 9.3 trillion DNA base pairs — “a repre-
sentative snapshot of genomes spanning all
observed evolution”, as the resulting bioRxiv
preprint paper puts it. It could then identify
intron-exon boundaries, predict theimpacts
of mutations and generate ‘realistic’gene and
genomic sequences, among other things.

Models made simple

Genomic Almodels canalso be distinguished
by the type of regulatory interactions they
predict, Kundaje says. Sequence-to-function
models mostly identify important DNA motif's
(which, because their function depends on
their proximity to the regulated gene, are said
toactincis) without regard to the biology that
occurs there.

Trans models, by contrast, aim to identify
which genes regulate which other genes, for
instance, to tease apart networks of gene
regulation. (They are called transbecause the
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factors that mediate this regulation actata
distance.) But this, says Kundaje, “is still very
fraught and very problematic” because trans
models — which are generally trained on data
such as RNA expression — must infer causal
relationships without datathat canreveal cau-
sality. There’sno guarantee that two genes are
directly linked just because their expression
rises and falls in tandem. Even if they are, it’s
notnecessarily obviousin which direction the
relationship works: does A regulate B or vice
versa? Ifthese models are then asked to predict
the impact of a perturbation — for example,
what happens if a given gene is knocked out
—the models often fail.

Models can include both cis and trans ele-
ments, says Sushmita Roy, a computational
biologist at the University of Wisconsin-
Madison, for instance by building regulatory
networks on the basis of chromatin accessi-
bility data and weighting those predictions
by gene expression. But perhaps the first
model to truly bridge the divide, Kundaje
says, is Scooby —asingle-cell version of Borzoi
(go.nature.com/3upffnp). By leveraging both
chromatin accessibility and transcriptional
data from the same cells, Scooby predicts
genome features and cell state simultaneously.
“Itis one of the first cis-transmodels,” he says.

Sequence-to-function models can also
probe other aspects of gene regulation. In
2024, teamsled by Zhou (whoisnow at the Uni-
versity of Texas Southwestern Medical Center
inDallas), Kundaje and Charles Danko, acom-
putational biologist at Cornell University in
Ithaca, New York, independently described
sequence-to-function models capable of pre-
dicting sites of transcription initiation®°,

Zhouused histeam’s model, Puffin, toiden-
tify the common features and placement of
key regulatory elements around sites of tran-
scriptioninitiation, including binding sites for
the transcription factors YY1, SP1, CREB and

Computational biologist Jacob Schreiber co-developed an algorithm called Ledidi.

Initiator. Danko’s team trained its Almodel on
matched genome sequences and transcription
initiation data from 58 individuals, creating
asuite of models that were, he says, “for the
first time aware of how differences between
individuals in their genome sequence influ-
ence the pattern” of transcription initiation.

Collectively, says Zhou, these studies begin
totease apart the motifs that regulate the posi-
tioning and strength of transcription initia-
tion, including that of the transcription factor
TFIID. TFIID is an essential protein complex
that binds to the promoter element known as
aTATAbox — despite the fact that most eukar-
yotic promoters don’t seemto contain a TATA
box. “One mechanistic interpretation is that
TFIID is binding the best available of the ‘bad
options’ when it picks a site” in a TATA-less
promoter, Danko explains.

Most genomic models make these pre-
dictions from relatively small inputs — any-
where from a few hundred to a few thousand
bases. But gene regulation can occur over
much longer tracts of genome space, and
some models are able to make predictions
at or near those scales. Borzoi, for instance,
accepts 524 kilobases of input DNA, and Evo 2
and Google DeepMind’s newly announced
AlphaGenome can work with a megabase.

These models can transform those
sequences into vast collections of estimated
data. Givenaninputsequence of 196,608 bases
of human DNA, for instance, Enformer out-
puts 2,131 predictions of transcription fac-
tor binding, 1,860 of histone modifications,
684 of chromatin accessibility and 638 of
gene expression, at 128-base resolution
(go.nature.com/4mbe42h).

A finite genome

Yet despite these models’ extensive ‘receptive
fields’, they can still miss things, says Jacob
Schreiber, a computational biologist at the
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Research Institute of Molecular Pathology in
Vienna, because enhancers might exert effects
that are biologically meaningful butinvisible
tothe Altool. “We have not cracked long-range
regulation,” he says.

Another challenge is that, as vast as it is,
the human genome is finite — there are only
about20,000-25,000 genes, for instance, and
onlyafraction of those are regulatedina cell-
type-specific manner. That means that for all
thosebillions of bases, there are relatively few
examples of regulatory strategies fromwhich
amodel canlearn.

“There’s just so many different biochemical
mechanisms that could happen on DNA that
thereare probably averylarge number of them
that only occur once or evenzero timesinour
genomesequence,” says biomedical engineer
CarldeBoer at the University of British Colum-
biain Vancouver, Canada.

One approachtobroadeningan Almodel’s
knowledge base is to feed it more than just
reference genomes. Some model builders,
for instance, train their tools on data from
multiple individuals or from across the phy-
logenetic tree to give the models a sense of
genetic diversity.

Anotherapproach, advanced by de Boer and
Jussi Taipale, a systems biologist at the Uni-
versity of Cambridge, UK, is to look beyond
natural genomes to fully artificial DNAs™.

As a postdoc at the Broad Institute of MIT
and Harvard in Cambridge, Massachusetts,
de Boer and his colleagues tested some
100 millionrandom sequences, each of which
were 80 nucleotides in length — “about a
human genome’s worth” — for their ability to
drive expression of a fluorescent protein in
yeast (Saccharomyces cerevisiae)™. (The yeast
genome is made up of about 12 million bases,
compared with roughly 3 billioninthe human
genome.) This approach, de Boer says, “is
actually much better” for understanding the
grammar of the genome than using genomic
DNA, “because all of the signals you see in the
random DNA are causal”. If you see fluores-
cence, the sequence is active. The genome,
by contrast, isa product of evolution, meaning
elements might be positioned owing to selec-
tive pressures as well as function.

According to de Boer, the yeast exercise
yielded two key insights. First, it reinforced
that “there are probably widespread bio-
physical interactions happening in regula-
tory regions”. Functional motifs were not
randomly arranged in active sequences; they
were positioned in specific configurations —
forinstance, to conform to the helical spacing
of the DNA double helix.

Thesecondinsightinvolved theimportance
of low-affinity transcription-factor-DNA
interactions. Even weak interactions, the team
found, could exert a large influence on gene
regulation, just as relatively weak chemical
interactions can hold two proteins together.
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Beyond studies of genomic grammar
and gene regulation, researchers can use Al
models for genetic fine-mapping — identify-
ing which human genetic variants that have
beenidentified in genome-wide association
studies (GWAS) are causal for a certain pheno-
type. As many as 95% of sequence differences
identified in GWAS are found in non-coding
DNAP®, Researchers can also use genomic Al
tools to probe mutations in silico, to better
understand the impact of genetic variation.

And then there’s sequence design. From
an engineering standpoint, successfully
designing a sequence from scratch demon-
strates that researchers (or their Al models)
have learnt something fundamental about
the genome, says Zhou. “We can use this as
away to verify our understanding,” he says.
More practically, it can also be used to create
bespoke sequences that can limit gene expres-
sion to a specific time and place, for instance
for gene-therapy applications, or to design
sequences that respond to specific stimuli. “I
think that the applications for gene therapy
and cell therapy are very clear,” says Lal.

Several papers have demonstrated this
approach. In 2024, Aerts and transcription
biologist Alexander Stark at the Research
Institute of Molecular Biology in Viennainde-
pendently reported using sequence-to-func-
tion models as ‘oracles’ to select and evolve
sequences that would have desired behaviour
infruitflies (Drosophila melanogaster)*", and
in Aerts’s case, human cells as well. Geneticist
Ryan Tewhey at the Jackson Laboratory in Bar
Harbor, Maine, and his team used reporter
assay data to train a derivative of the Bas-
set model, which they then used to design
sequences that were active in blood, liver and
neuronal cells, as well asin zebrafish and mice™.

These studies do tend to use cell types that
are highly divergent, Kundaje notes. Practical
applications, forinstance ingene therapy, will
probably require targeting specific cell types
at particular points in development, which is
aharder nut to crack.

Still, the resulting elements can reveal
remarkable subtleties. Aerts’s team has
observed overlapping regulatory codes™,
for instance — and found that it is possible to
alter a piece of regulatory DNA so that only
one code functions. They also discovered ‘near
enhancers’ that could be converted into reg-
ulatory DNA with a handful of mutations —an
observation that underscores how a single
genetic change can inadvertently activate
previously silent genes. “The creation of anew
enhancer is not so difficult,” he says. And the
team showed that it could design sequences
totarget different cells from the same starting
sequence.

That’s not to say that the Al model itself
is designing DNA. Rather, these strategies
tend to take a starting sequence, use Al to
select the best performers, modify each base

832 | Nature | Vol 644 | 21 August 2025

insilico, and repeat. To optimize the process,
Schreiber, with Stark and computational
biologist William Noble at the University of
WashingtoninSeattle, developed analgorithm
called Ledidi”. Rather than computationally
testing every possible mutation, Schreiber
explains, Ledidi seeks the minimum set of
editsrequired toimpart a desired behaviour.

Accordingto Schreiber, the software can use
multiple oracles to optimize several activities
atonce. As aresult, itis possible to use Ledidi
to design extremely subtle changes, such as
decreasing chromatin accessibility in a spe-
cific region without affecting the binding of
aspecific protein. It can also create a suite of
solutions, called an affinity catalogue to help
researcherstobetterinvestigate transcription
biology.

Evo2andreglLM, by contrast, are generative:
given a prompt, they spit out a new sequence
from scratch. In one study®, for instance,
chemical engineer Brian Hie at Stanford Uni-
versity and his colleagues used one version of
Evo to generate new toxin-antitoxin protein
pairs, which some bacteria use as a defence
against viruses.

“There are probably
widespread biophysical
interactions happeningin
regulatoryregions.”

Aertstested agenerative modelin his study™,
too, finding it effective but less interesting for
decipheringthe cis-regulatory code. Using an
iterative design process, he explains, it’s pos-
sible to probe sequences after each round of
changes to gain insights into the biology of
regulatory DNA. Take Schreiber’s experience
with an affinity catalogue that he built for the
transcription factor GATA2, forinstance”. Ashe
studied the different solutions the model came
up with, he found that some relatively weak
sequences had more GATA2 motifs, whereas
stronger ones did not. “The model had learnt
areally sophisticated cis-regulatory code,” he
says. “It was playing with the affinity of these
motifs, their spacing relative to each other, and
the presence of co-factors.”

Upfor debate

Researchers agree that sequence-to-function
models generally work as advertised. But what
they and other Al models can and should be
used for remains up for debate.

Inapair of studies™? published in late 2023,
computational biologists Nilah loannidis at
the University of California, Berkeley, and
Sara Mostafavi at the University of Washing-
ton in Seattle and their teams independently
demonstrated that genomic models struggle
with akey task: explaining why the variationin
gene expression differs from personto person

—why one person expresses a given gene more
thananother, givenanindividual’s unique con-
stellation of gene variants. “They actually do
very poorly at this task,” says loannidis.

To complicate matters, existing benchmarks
of Al performance don’t necessarily address
the questions that researchers want to ask,
loannidis notes, especially regarding inter-
personal genetic variation. Kundaje’s team
has created its own benchmark tool, called
DART-Eval, to help make the evaluation of mod-
els more systematic and comprehensive. So
has loannidis, with her tool called GUANinE.

Kundajeisevenlessimpressed with unsuper-
vised models. Although they perform well with
coding sequences and small genomes, whenit
comes tomammalianregulatory DNA, he says,
“Iwould consider them catastrophicfailures.”

Unsupervised models are largely unaware
of the many layers of epigenetic regulation,
such as transcription-factor binding and
histone modification, that make genomes
work. They have no idea what happens when
sequences are perturbed. And of course, not
every base in the genome is meaningful. Still,
genomics-Aladvocates see apromising future.
Casey Greene, a bioinformatician at the Uni-
versity of Colorado Anschutz Medical Campus
inAurora, foresees aday when Al tools will be
able to design an exquisitely fine-tuned piece
of DNA just as natural-language instructions
cangenerate code today, a process sometimes
called vibe coding. “I want to vibe code the
genome,” he says.

Whether he’ll be able to do that with a
single-character prompt remains to be seen.

Jeffrey M. Perkel is Technology Editor at
Nature.
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