
In 1862, Victor Hugo reportedly wrote to his 
publisher to ask how his newly published 
novel Les Misérables was selling, with a sin-
gle character query: “?” The response: “!” 

This story of one of the world’s most 
concise correspondences is apocryphal. But 
some genome-focused artificial intelligence 
(AI) systems can, like the French writer’s pub-
lisher, respond meaningfully to equally short 
prompts. 

Instead of the detailed queries required to 
use the chatbot ChatGPT effectively, Evo, an AI 
model trained on some 300 billion nucleotide 
bases, including 80,000 microbial whole-ge-
nome sequences, will — prompted with ‘#’ — 
dream up a new sequence of mobile DNA. It 
does so on the basis of other such biological 
systems that the model has been exposed to 

(see go.nature.com/3jvp922). Given a prompt 
such as ‘030’, an AI tool called regLM can spit 
out 200-base sequences that are predicted 
to exhibit regulatory activity in any of three 
human cell lines (go.nature.com/4jpttm8). 

Evo and regLM are part of a fast-growing 
suite of tools that aim to internalize, decode, 
interpret and build on the grammar of the 
genome — especially the vast portion that 
does not code for proteins. Think AlphaFold, 
but for regulatory DNA, which are sequences 
that control gene expression. 

When G oogle DeepMind released 
AlphaFold in 2020, the company claimed it 
had solved a decades-old ‘grand challenge’ 
in biology — predicting a protein’s 3D shape 
from its sequence alone. But the non-coding 
fraction of the genome could prove to be an 

even grander challenge. 
A given sequence of amino acids will 

generally fold into the same shape, whatever 
the cellular context. That predictability is 
not true of the genome, in which short, func-
tional sequence motifs — gene promoters 
and enhancers, transcription start and stop 
sites and so on — can be scattered across long 
stretches of seemingly purposeless DNA. 
These motifs might overlap, interact over 
long distances, bind to competing protein 
factors or respond to signals that are only 
present in specific cells or at certain times in 
development. They are also tightly wrapped 
within chromatin, a complex of DNA and pro-
tein, which might be more or less accessible 
to external proteins depending on what the 
cell is doing. 

DECODING THE GENOME
Scientists are seeking to decipher the role of non-coding DNA in the human 
genome, helped by a suite of artificial-intelligence tools. By Jeffrey M. Perkel
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“How proteins are encoded in the genome, 
the code of how genes are expressed, when 
and where, how much — is one of the most fas-
cinating problems in biology,” says Stein Aerts, 
a computational biologist at the VIB Center for 
AI & Computational Biology and the Catholic 
University of Leuven (KU Leuven) in Belgium. 
But with training, AI tools can detect subtle 
differences between sequences and predict 
what they do and how they behave, identifying 
crucial motifs and even estimating the impact 
of altering them. From there, AI models can 
attempt to predict the physiological impact 
of genetic variants and even guide the design 
of new sequences with specified functions. 

These tools are not perfect, and researchers 
cannot even agree on how best to assess their 
performance. But that makes the field excit-
ing. “It’s so clear that it’s a solvable problem,” 
says Julia Zeitlinger, a developmental and 
computational biologist at the Stowers Institute 
for Medical Research in Kansas City, Missouri, 
who developed an AI model called BPNet and 
uses it to decode the mechanistic sequence 
rules of gene regulation, “but it’s not clear how”.

Of puppies and puffins
DeepSEA, one of the first genomic AI tools, 
was published1 ten years ago this month by 
computational biologists Jian Zhou and Olga 
Troyanskaya at Princeton University in New 
Jersey. 

DeepSEA is a convolutional neural net-
work (CNN) — the same kind of deep-learning 
architecture used to teach computers to clas-
sify images as, say, a cat or a dog. Zhou and 
Troyanskaya trained a model on epigenetics 
data, including transcription-factor binding, 
chromatin accessibility and histone modifica-
tions, from a public research project called the 
Encyclopedia of DNA Elements (ENCODE). The 
model learnt to predict the presence of such 
features in 1,000-base segments of DNA it had 
never encountered. 

DeepSEA’s training enabled it to tease 
apart the biological consequence and 
severity of sequence variants associated 
with human disease. For instance, one 
breast-cancer-associated sequence variant 
called rs4784227 seems to strengthen the 
binding of a DNA-binding protein called 
FOXA1, whereas a variant associated with the 
blood condition α-thalassemia creates a pos-
sible binding site for GATA1, a transcription 
factor involved in blood-cell development. 

Since then, the field has exploded. David 
Kelley, a principal investigator at the bio-
technology company Calico Life Sciences in 
South San Francisco, California, has created 
or co-created multiple AI models, many with 
canine-inspired names. These include Akita2 
(for predicting 3D genome folding), Basset3 
and Basenji4 (for regulatory-sequence predic-
tion) and Borzoi5, which predicts gene expres-
sion across the length of a gene. 

These models raised a litter of variants: 
Basset begat Malinois, and Borzoi begat 
Scooby. Other researchers have built their 
own (non-canine) models including Puffin, 
ChromBPNet and more. 

Not all are CNNs. Enformer — a model that 
predicts both gene expression and epigenetic 
data over long distances — and Borzoi, for 
instance, “use both convolution blocks and 
transformer blocks”, says Kelley, whose lab-
oratory developed both models. “The convo-
lution blocks are great for capturing the local 
sequence patterns, and then the transformer 

blocks help look around a larger region to con-
sider the local patterns in a broader context 
before predicting the data.” But whatever the 
architecture, they come in two basic forms, 
says Anshul Kundaje, who researches com-
putational genomics at Stanford University 
in California. Supervised and sequence-to-
function models are trained on functional 
genomic data — gene expression or chromatin 
accessibility, for instance — and learn to pre-
dict the function of DNA sequences they have 
never encountered. Often working at or near 
single-nucleotide resolution, these models 
can identify key motifs, such as functionally 
important protein-binding sites, and predict 
the significance of altering them. DeepSEA is 
one; Kundaje’s ChromBPNet, which predicts 
regions of chromatin accessibility, another.

The other class is unsupervised or self-su-
pervised ‘genomic language models’ (gLMs). 
Like ChatGPT, they are trained on vast quan-
tities of text — in this case, genomic sequence 

data — and are tasked with either predicting 
the next base (or ‘token’) in a sequence or fill-
ing in missing bases on the basis of surround-
ing context. These models “are not trying to 
predict the activity of a sequence, they’re try-
ing to predict the composition of a sequence”, 
says Avantika Lal, a machine-learning scientist 
at biotechnology firm Genentech in South San 
Francisco. 

With machine-learning scientist Gökçen 
Eraslan and their colleagues at Genentech, 
Lal co-developed regLM, a language model 
that they trained by labelling regulatory 
sequences with succinct markers of activity6 
— for instance, ‘04<sequence>’ to indicate 
strong expression in one cell line and low 
activity in another. The model is therefore not 
strictly unsupervised, says Eraslan — he calls it a 
‘function-to-sequence’ model. But those same 
labels can then be used to prompt regLM to cre-
ate new sequences with predicted behaviours. 

Evo 2, announced in February7, was trained 
on 9.3 trillion DNA base pairs — “a repre-
sentative snapshot of genomes spanning all 
observed evolution”, as the resulting bioRxiv 
preprint paper puts it. It could then identify 
intron–exon boundaries, predict the impacts 
of mutations and generate ‘realistic’ gene and 
genomic sequences, among other things.

Models made simple
Genomic AI models can also be distinguished 
by the type of regulatory interactions they 
predict, Kundaje says. Sequence-to-function 
models mostly identify important DNA motifs 
(which, because their function depends on 
their proximity to the regulated gene, are said 
to act in cis) without regard to the biology that 
occurs there. 

Trans models, by contrast, aim to identify 
which genes regulate which other genes, for 
instance, to tease apart networks of gene 
regulation. (They are called trans because the 

Carl de Boer is a biomedical engineer at the University of British Columbia in Canada.

“There’s just so many 
different biochemical 
mechanisms that could 
happen on DNA.”

PA
U

L 
JO

SE
P

H

830  |  Nature  |  Vol 644  |  21 August 2025

Work / Technology & tools



factors that mediate this regulation act at a 
distance.) But this, says Kundaje, “is still very 
fraught and very problematic” because trans 
models — which are generally trained on data 
such as RNA expression — must infer causal 
relationships without data that can reveal cau-
sality. There’s no guarantee that two genes are 
directly linked  just because their expression 
rises and falls in tandem. Even if they are, it’s 
not necessarily obvious in which direction the 
relationship works: does A regulate B or vice 
versa? If these models are then asked to predict 
the impact of a perturbation — for example, 
what happens if a given gene is knocked out 
— the models often fail. 

Models can include both cis and trans ele-
ments, says Sushmita Roy, a computational 
biologist at the University of Wisconsin–
Madison, for instance by building regulatory 
networks on the basis of chromatin accessi-
bility data and weighting those predictions 
by gene expression. But perhaps the first 
model to truly bridge the divide, Kundaje 
says, is Scooby — a single-cell version of Borzoi 
(go.nature.com/3upffnp). By leveraging both 
chromatin accessibility and transcriptional 
data from the same cells, Scooby predicts 
genome features and cell state simultaneously. 
“It is one of the first cis–trans models,” he says. 

Sequence-to-function models can also 
probe other aspects of gene regulation. In 
2024, teams led by Zhou (who is now at the Uni-
versity of Texas Southwestern Medical Center 
in Dallas), Kundaje and Charles Danko, a com-
putational biologist at Cornell University in 
Ithaca, New York, independently described 
sequence-to-function models capable of pre-
dicting sites of transcription initiation8–10. 

Zhou used his team’s model, Puffin, to iden-
tify the common features and placement of 
key regulatory elements around sites of tran-
scription initiation, including binding sites for 
the transcription factors YY1, SP1, CREB and 

Initiator. Danko’s team trained its AI model on 
matched genome sequences and transcription 
initiation data from 58 individuals, creating 
a suite of models that were, he says, “for the 
first time aware of how differences between 
individuals in their genome sequence influ-
ence the pattern” of transcription initiation.

Collectively, says Zhou, these studies begin 
to tease apart the motifs that regulate the posi-
tioning and strength of transcription initia-
tion, including that of the transcription factor 
TFIID. TFIID is an essential protein complex 
that binds to the promoter element known as 
a TATA box — despite the fact that most eukar-
yotic promoters don’t seem to contain a TATA 
box. “One mechanistic interpretation is that 
TFIID is binding the best available of the ‘bad 
options’ when it picks a site” in a TATA-less 
promoter, Danko explains. 

Most genomic models make these pre-
dictions from relatively small inputs — any-
where from a few hundred to a few thousand 
bases. But gene regulation can occur over 
much longer tracts of genome space, and 
some models are able to make predictions 
at or near those scales. Borzoi, for instance, 
accepts 524 kilobases of input DNA, and Evo 2 
and Google DeepMind’s newly announced 
AlphaGenome can work with a megabase. 

These models can transform those 
sequences into vast collections of estimated 
data. Given an input sequence of 196,608 bases 
of human DNA, for instance, Enformer out-
puts 2,131 predictions of transcription fac-
tor binding, 1,860 of histone modifications, 
684 of chromatin accessibility and 638 of 
gene expression, at 128-base resolution 
(go.nature.com/4mbe42h). 

A finite genome 
Yet despite these models’ extensive ‘receptive 
fields’, they can still miss things, says Jacob 
Schreiber, a computational biologist at the 

Research Institute of Molecular Pathology in 
Vienna, because enhancers might exert effects 
that are biologically meaningful but invisible 
to the AI tool. “We have not cracked long-range 
regulation,” he says.

Another challenge is that, as vast as it is, 
the human genome is finite — there are only 
about 20,000–25,000 genes, for instance, and 
only a fraction of those are regulated in a cell-
type-specific manner. That means that for all 
those billions of bases, there are relatively few 
examples of regulatory strategies from which 
a model can learn. 

“There’s just so many different biochemical 
mechanisms that could happen on DNA that 
there are probably a very large number of them 
that only occur once or even zero times in our 
genome sequence,” says biomedical engineer 
Carl de Boer at the University of British Colum-
bia in Vancouver, Canada. 

One approach to broadening an AI model’s 
knowledge base is to feed it more than just 
reference genomes. Some model builders, 
for instance, train their tools on data from 
multiple individuals or from across the phy-
logenetic tree to give the models a sense of 
genetic diversity. 

Another approach, advanced by de Boer and 
Jussi Taipale, a systems biologist at the Uni-
versity of Cambridge, UK, is to look beyond 
natural genomes to fully artificial DNAs11. 

As a postdoc at the Broad Institute of MIT 
and Harvard in Cambridge, Massachusetts, 
de  Boer and his colleagues tested some 
100 million random sequences, each of which 
were 80 nucleotides in length — “about a 
human genome’s worth” — for their ability to 
drive expression of a fluorescent protein in 
yeast (Saccharomyces cerevisiae)12. (The yeast 
genome is made up of about 12 million bases, 
compared with roughly 3 billion in the human 
genome.) This approach, de Boer says, “is 
actually much better” for understanding the 
grammar of the genome than using genomic 
DNA, “because all of the signals you see in the 
random DNA are causal”. If you see fluores-
cence, the sequence is active. The genome, 
by contrast, is a product of evolution, meaning 
elements might be positioned owing to selec-
tive pressures as well as function.

According to de Boer, the yeast exercise 
yielded two key insights. First, it reinforced 
that “there are probably widespread bio-
physical interactions happening in regula-
tory regions”. Functional motifs were not 
randomly arranged in active sequences; they 
were positioned in specific configurations — 
for instance, to conform to the helical spacing 
of the DNA double helix. 

The second insight involved the importance 
of low-affinity transcription-factor–DNA 
interactions. Even weak interactions, the team 
found, could exert a large influence on gene 
regulation, just as relatively weak chemical 
interactions can hold two proteins together. 

Computational biologist Jacob Schreiber co-developed an algorithm called Ledidi.
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Beyond studies of genomic grammar 
and gene regulation, researchers can use AI 
models for genetic fine-mapping — identify-
ing which human genetic variants that have 
been identified in genome-wide association 
studies (GWAS) are causal for a certain pheno-
type. As many as 95% of sequence differences 
identified in GWAS are found in non-coding 
DNA13. Researchers can also use genomic AI 
tools to probe mutations in silico, to better 
understand the impact of genetic variation. 

And then there’s sequence design. From 
an engineering standpoint, successfully 
designing a sequence from scratch demon-
strates that researchers (or their AI models) 
have learnt something fundamental about 
the genome, says Zhou. “We can use this as 
a way to verify our understanding,” he says. 
More practically, it can also be used to create 
bespoke sequences that can limit gene expres-
sion to a specific time and place, for instance 
for gene-therapy applications, or to design 
sequences that respond to specific stimuli. “I 
think that the applications for gene therapy 
and cell therapy are very clear,” says Lal. 

Several papers have demonstrated this 
approach. In 2024, Aerts and transcription 
biologist Alexander Stark at the Research 
Institute of Molecular Biology in Vienna inde-
pendently reported using sequence-to-func-
tion models as ‘oracles’ to select and evolve 
sequences that would have desired behaviour 
in fruit flies (Drosophila melanogaster)14,15, and 
in Aerts’s case, human cells as well. Geneticist 
Ryan Tewhey at the Jackson Laboratory in Bar 
Harbor, Maine, and his team used reporter 
assay data to train a derivative of the Bas-
set model, which they then used to design 
sequences that were active in blood, liver and 
neuronal cells, as well as in zebrafish and mice16. 

These studies do tend to use cell types that 
are highly divergent, Kundaje notes. Practical 
applications, for instance in gene therapy, will 
probably require targeting specific cell types 
at particular points in development, which is 
a harder nut to crack. 

Still, the resulting elements can reveal 
remarkable subtleties. Aerts’s team has 
observed overlapping regulatory codes14, 
for instance — and found that it is possible to 
alter a piece of regulatory DNA so that only 
one code functions. They also discovered ‘near 
enhancers’ that could be converted into reg-
ulatory DNA with a handful of mutations — an 
observation that underscores how a single 
genetic change can inadvertently activate 
previously silent genes. “The creation of a new 
enhancer is not so difficult,” he says. And the 
team showed that it could design sequences 
to target different cells from the same starting 
sequence.

That’s not to say that the AI model itself 
is designing DNA. Rather, these strategies 
tend to take a starting sequence, use AI to 
select the best performers, modify each base 

in silico, and repeat. To optimize the process, 
Schreiber, with Stark and computational 
biologist William Noble at the University of 
Washington in Seattle, developed an algorithm 
called Ledidi17. Rather than computationally 
testing every possible mutation, Schreiber 
explains, Ledidi seeks the minimum set of 
edits required to impart a desired behaviour. 

According to Schreiber, the software can use 
multiple oracles to optimize several activities 
at once. As a result, it is possible to use Ledidi 
to design extremely subtle changes, such as 
decreasing chromatin accessibility in a spe-
cific region without affecting the binding of 
a specific protein. It can also create a suite of 
solutions, called an affinity catalogue to help 
researchers to better investigate transcription 
biology. 

Evo 2 and regLM, by contrast, are generative: 
given a prompt, they spit out a new sequence 
from scratch. In one study18, for instance, 
chemical engineer Brian Hie at Stanford Uni-
versity and his colleagues used one version of 
Evo to generate new toxin–antitoxin protein 
pairs, which some bacteria use as a defence 
against viruses. 

Aerts tested a generative model in his study14, 
too, finding it effective but less interesting for 
deciphering the cis-regulatory code. Using an 
iterative design process, he explains, it’s pos-
sible to probe sequences after each round of 
changes to gain insights into the biology of 
regulatory DNA. Take Schreiber’s experience 
with an affinity catalogue that he built for the 
transcription factor GATA2, for instance17. As he 
studied the different solutions the model came 
up with, he found that some relatively weak 
sequences had more GATA2 motifs, whereas 
stronger ones did not. “The model had learnt 
a really sophisticated cis-regulatory code,” he 
says. “It was playing with the affinity of these 
motifs, their spacing relative to each other, and 
the presence of co-factors.” 

Up for debate 
Researchers agree that sequence-to-function 
models generally work as advertised. But what 
they and other AI models can and should be 
used for remains up for debate.

In a pair of studies19,20 published in late 2023, 
computational biologists Nilah Ioannidis at 
the University of California, Berkeley, and 
Sara Mostafavi at the University of Washing-
ton in Seattle and their teams independently 
demonstrated that genomic models struggle 
with a key task: explaining why the variation in 
gene expression differs from person to person 

— why one person expresses a given gene more 
than another, given an individual’s unique con-
stellation of gene variants. “They actually do 
very poorly at this task,” says Ioannidis. 

To complicate matters, existing benchmarks 
of AI performance don’t necessarily address 
the questions that researchers want to ask, 
Ioannidis notes, especially regarding inter-
personal genetic variation. Kundaje’s team 
has created its own benchmark tool, called 
DART-Eval, to help make the evaluation of mod-
els more systematic and comprehensive. So 
has Ioannidis, with her tool called GUANinE. 

Kundaje is even less impressed with unsuper-
vised models. Although they perform well with 
coding sequences and small genomes, when it 
comes to mammalian regulatory DNA, he says, 
“I would consider them catastrophic failures.” 

Unsupervised models are largely unaware 
of the many layers of epigenetic regulation, 
such as transcription-factor binding and 
histone modification, that make genomes 
work. They have no idea what happens when 
sequences are perturbed. And of course, not 
every base in the genome is meaningful. Still, 
genomics-AI advocates see a promising future. 
Casey Greene, a bioinformatician at the Uni-
versity of Colorado Anschutz Medical Campus 
in Aurora, foresees a day when AI tools will be 
able to design an exquisitely fine-tuned piece 
of DNA just as natural-language instructions 
can generate code today, a process sometimes 
called vibe coding. “I want to vibe code the 
genome,” he says. 

Whether he’ll be able to do that with a 
single-character prompt remains to be seen. 

Jeffrey M. Perkel is Technology Editor at 
Nature.
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