
Single-cell technologies have shattered 
the fuzzy lenses through which 
researchers conventionally view 
biology. Instead of looking at the 
average behaviour of a swathe of 

cells, scientists can interrogate genes or other 
features cell by cell. But the technology also 
brings challenges: the data are expensive to col-
lect and analyse, and typically force researchers 
to choose between resolution, throughput and 
physical location. When it comes to single-cell 
biology, researchers can learn a fair bit about 
any one cell, but it’s harder to determine 
precisely where that cell came from.

At the forefront of the design — and use — of 
single-cell technologies is the Human Cell Atlas 
(HCA), which aims to catalogue every cell type 
in people. Launched in 2016, the project has 
profiled hundreds of millions of single cells, 
resulted in about 440 published studies and 
led to dozens of wet-lab and computational 
procedures.

Now, project co-chair Aviv Regev, head of 
research and early development at Genentech 
in South San Francisco, California, and the 
hundreds of scientists involved in the HCA say 
that they’ve hit a critical mass of accomplish-
ments. To showcase this progress, the project 

is releasing more than two dozen papers this 
year across Nature Portfolio journals, includ-
ing six in this issue of Nature. These papers 
highlight the project’s accomplishments 
in cell-fate mapping, data integration and 
predictive modelling.

Here, Nature profiles some of the key tech-
nologies that made them possible. Available 
on the website GitHub, these computational 
tools include ways to catalogue cells and 
search atlas data; shortcuts for researchers 
to obtain spatial or multi-modal data at low 
cost; and in silico models that describe how 
cells interact and where and how diseased cells 

COMPUTATIONAL TECHNOLOGIES 
OF THE HUMAN CELL ATLAS
As the international effort reaches a ‘critical mass’ of achievements, Nature 
highlights seven tools poised to enable further discoveries. By Amber Dance

A fluorescent light micrograph of a section of the cerebellum, at the back of the brain, showing cell nuclei (red) and proteins (green and blue). 
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might respond to treatment.
Such tools make massive data sets accessi-

ble, says Darcy Wagner, a biomedical engineer 
at McGill University in Montreal, Canada. “You 
just want to turn it in as many different ways as 
possible to look at it, because it’s too complex 
for the human brain.” Computational tech-
niques, many that rely on forms of machine 
learning or artificial intelligence (AI), can step 
in and provide insights.

Search and annotate
As researchers collect single-cell data and 
refine them into cell atlases, one key task is to 
characterize and label, or annotate, each cell 
type. “This is normally a very time-consuming, 
onerous task reserved for a few experts in biol-
ogy,” says Evan Biederstedt, a computational 
biologist and head of the HCA Cell Annotation 
Platform at the Broad Institute of MIT and 
Harvard in Cambridge, Massachusetts.

Researchers have developed several 
programs to label cells automatically — but 
the tools don’t always come up with the same 
answer. Enter popV. This tool does some-
thing simple but powerful: it incorporates 
eight automated cell-annotation tools into 
one platform, and more can be added as they 
become available1. “It’s a speed-up tool,” says 
co-developer Can Ergen, a computational biol-
ogist at the University of California, Berkeley. 
Researchers who have freshly generated sin-
gle-cell RNA sequencing data can load them 
into popV, and each of the eight methods will 
‘vote’ on cell identity — hence the tool’s full 
name, popular Vote. For any given cell, users 
can check whether all eight annotations line up, 
or if there’s a split vote on possible identities.

If the methods agree on a cell type, research-
ers can feel confident of its identity; if there is 
disagreement, maybe not so much. To quan-
tify that, popV provides ‘uncertainty scores’ so 
that users will know how much trust to put in 
its identifications. “That’s a really cool thing,” 
says Regev. PopV was trained using data from 
Tabula Sapiens, a human cell atlas covering 
nearly 500,000 cells that represent 24 organs 
from 15 people. The researchers then tested it 
on a database from the Human Lung Cell Atlas2; 
popV’s predictions agreed with most of the 
annotations and were more accurate than any 
single computational annotator, according to 
the resulting paper.

Biederstedt plans to incorporate popV into 
the HCA Cell Annotation Platform user inter-
face, in which scientists will be able to view 
popV’s predictions as they classify cell types. 
“It does get the community closer to the dream 
of automated cell annotations, and will help 
researchers tremendously,” he says.

Once researchers have found an interesting 
cell type or state, they might wonder where 
else it occurs. Regev and her colleagues devel-
oped SCimilarity to answer this question. The 
software can take a cellular profile of interest 

and look for similar profiles3, just as geneti-
cists use the BLAST algorithm to find related 
genetic sequences.

“Figuring out if two cells are similar, that is 
a difficult problem,” says Regev — the match-
ing cell might be one among millions that are 
already in atlas databases. Fortunately, it’s the 
kind of problem that has already been solved 
by image-processing algorithms, such as 
face-matching software. And that’s the same 
approach her team used. The researchers fed 
a computer 50 million trios of cells, wherein 
each trio contained two similar cells and one 
outlier, until the software learnt the features 
that would distinguish matching cell types.

Each cell is initially defined by the expression 
of some 20,000 human genes, but the program 
compresses those into 128 key features for 
cell identity, explains co-developer Graham 
Heimberg, a computational biologist and AI sci-
entist at Genentech; it is those features that drive 
the matching algorithm. Searches of the data-
base, which covers more than 23 million cells 
from nearly 400 data sets, take just seconds.

To test SCimilarity, the researchers looked 
for data sets containing cells that are similar 
to certain immune cells found in fibrotic lung 
tissue, which would hint at techniques to pro-
duce and study those cells in the laboratory. 
Searching across 17 in vitro and ex vivo studies 
involving nearly 42,000 cells, the team unex-
pectedly found a hit among white blood cells 
grown in 3D hydrogel systems for the purposes 
of making blood stem cells3,4. Heimberg and 

his colleagues confirmed that the cultured 
cells, regrown in their lab, were similar to the 
lung cells. “We really wouldn’t have expected 
that to come up as a hit,” he says — but with 
SCimilarity, the link was clear.

Computer, enhance!
The expense of high-resolution or 
high-throughput single-cell experiments is 
prohibitive for many groups. But scientists are 
developing workarounds, using AI and machine 
learning to extrapolate single-cell or spatial 
data from much smaller or simpler data sets.

One example is scSemiProfiler. Suppose 
researchers want single-cell RNA profiles but 
can only afford bulk RNA sequencing. To help 
them make the most of their resources, scSemi-
Profiler uses bulk data and generative AI to pro-
duce the likely spread of single-cell profiles5. It’s 
like taking a low-resolution digital photograph 
and then inferring the high-resolution equiva-
lent, says developer Jun Ding, a computational 
biologist at McGill University Health Center.

The process does require some single-cell 
sequencing, but researchers can do that in 
small batches. Users add their handfuls of 
single-cell RNA profiles to the scSemiProfiler 
model until they and the program are satisfied 
with the output. The model will even advise 
researchers when more single-cell sequencing 
is necessary, and which cells to focus on.

Ding and colleagues test-drove scSemi-
Profiler on single-cell RNA profiles from the 
immune cells of 124 people with and without 

The SCimilarity tool identifies related cells. Here, two million single-cell profiles have been 
clustered by the resulting annotations, including immune cells (purple and orange clusters). 
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COVID-19. The program was able to generate 
the correct single-cell profiles based on bulk 
sequencing of each sample and single-cell 
sequences from a representative subset: 
just 28 of the original panel. The researchers 
estimate that such an approach could save 
researchers nearly US$125,000 in a simi-
lar study, because it slashes the single-cell 
sequencing required by about 80%.

“It has the potential to really expand the 
applicability” of single-cell sequencing, 
which is currently limited by cost, says David 
Eidelman, a physician-scientist at McGill 
University Health Center.

Similarly, Regev and her colleagues are 
using machine learning as a shortcut to gener-
ate spatially resolved, single-cell RNA sequenc-
ing data from a readily available resource: 
tissue slices stained with haematoxylin and 
eosin (H&E). This pink-and-purple staining 
technique has been used for more than a 
century, and lab and hospital archives are 
stacked with the slides. Because those staining 
patterns must somehow be rooted in molec-
ular features such as gene expression, Regev 
and her team wondered whether they could 
use the H&E information to generate what 
she calls “the fancy-schmancy stuff”: spatial 
RNA data, which are otherwise laborious and 
expensive to acquire.

Indeed, the researchers could. Their 
program, SCHAF6 (single-cell omics from 
histology analysis framework) comes in two 
versions, says co-developer Charles Comiter, a 
computer scientist at the Massachusetts Insti-
tute of Technology in Cambridge. The paired 
version is trained with H&E stains and limited 
spatial transcriptomics data from the same 
slice of tissue, and single-cell RNA profiles 
from an adjacent slice. Unpaired SCHAF, by 
contrast, is trained without any spatial RNA 
data. “You’ll still get a good model, but maybe 
not as powerful,” Comiter says.

The researchers tested SCHAF on data sets 
for which they had matched H&E, transcrip-
tomic and spatial RNA data, two for breast 
cancer and one for small-cell lung cancer, and 
obtained “incredibly accurate” output of the 
spatial results, says Comiter.

Nicholas Krasnow, a protein engineer at 
Harvard University in Cambridge, Massachu-
setts, calls SCHAF “exciting”. “I’m mainly just 
interested in seeing how it performs on new 
problems,” he says. But Regev cautions that 
more training data are needed to ready the 
software for real-world clinical applications.

Integrate and predict
As well as using one type of data to predict 
another type, as SCHAF does, computer mod-
els can incorporate the data from multiple 
co-existing types from the same sample. 
That’s the goal of multiDGD, which mod-
els biology using both RNA expression and 
chromatin-accessibility data from the same 

cells7. Using assays that measure the acces-
sibility of the packaged DNA by determining 
which genomic segments are open and 
available for transcription, and which are 
tightly wound, along with information about 
which genes are being actively expressed, 
researchers can get a more complete pic-
ture of cell biology. Regev calls multiDGD “a 
nice generative model to learn these shared 
representations”.

The input for multiDGD is based on expres-
sion levels for some 20,000 human genes as 
well as chromatin status (open or closed) for 
hundreds of thousands of segments across the 
genome — about 200,000 features per cell. 
These factors are reduced to a representative 
set of 20 or so features, which are then fed to 
the model.

This process of minimizing data “dimen-
sions” makes it easier to identify similarities 
and differences, says co-author Emma Dann, 
a computational biologist at Stanford Uni-
versity in California. From there, researchers 
can move on to different tasks, such as clus-
tering similar cell types or analysing devel-
opmental trajectories, she adds. MultiDGD 
outperformed other popular models in tasks 
such as cell-type clustering, particularly for 

small data sets, the team found.
Researchers can also ask questions of the 

model, perturbing a gene, say, or amplifying 
one gene’s expression. In one example, the 
team tested how silencing 41 transcription 
factors in silico might alter chromatin acces-
sibility of the target genes. Researchers can use 
such computational perturbations to generate 
hypotheses about how cells might react, says 
co-developer Viktoria Schuster, a data scien-
tist at the University of Copenhagen.

In Montreal, Ding is also building models 
for in silico experimentation. One, called 
CellAgentChat, infers cell–cell interactions 
across a range of distances8. Unlike other 
methods that model cells at the population 
level, CellAgentChat treats individual cells 
as autonomous agents — each cell is doing its 
own thing in an environment of other auton-
omous cells. This might approximate the 
biological truth more accurately than do mod-
els that lump cells together, says Eidelman. 
Each cell-cum-agent has digital ‘receptors’ 
that can receive molecular ‘signals’ released 
by other cells. In response, cells activate new 
gene-expression patterns, just as real cells do9.

Among other applications, such models 
can drive drug screens in silico, Ding says, for 
instance testing what happens if researchers 
block this or that receptor. His group tried that 

using a breast-cancer data set, and confirmed 
that the epidermal growth factor receptor, a 
known contributor and drug target, was a key 
interactor in its in silico interactions, too.

Ding’s group has also developed a model, 
called UNAGI, that is dedicated to in silico 
drug testing and focuses on how cells change 
over time9. The team fed UNAGI data from four 
stages of the lung disease idiopathic pulmonary 
fibrosis to create a virtual disease progression 
“sandbox”, as Ding puts it, with each cell repre-
sented by a couple of dozen features in a deep 
generative neural network. Using the model, 
the researchers could infer how gene expres-
sion changes as the disease progresses, and test 
whether different drugs would push cells back 
to an earlier gene-expression profile or towards 
a healthier one.

One drug that is already approved by the US 
Food and Drug Administration showed up in 
the researchers’ screen: nintedanib, a growth 
factor inhibitor that prevents reproduction of 
fibroblasts. But the screen also flagged medi-
cations that might work even better, Ding says.

Wagner calls it “a really important new 
tool”, and says that she’s particularly excited 
about its potential to identify small molecules 
that could replace more expensive biological 
therapies such as antibodies.

But, she cautions, testing and validation are 
crucial. “We always need to be cautious with 
these new tools, and constantly benchmarking 
against something that’s older,” says Wagner. 
And that problem will only grow as single-cell 
data sets continue to expand. According to 
Ergen, future software will probably have to 
contend with ten million cells at once, and 
possibly even more.

But those tools are coming. The first version 
of the HCA should be released in the next year 
or two, according to the organizers, but fur-
ther work is planned and more tools will surely 
emerge as the project’s many collaborators 
continue to advance atlases and the technol-
ogy to understand them.

“It’s always just a work in progress; we’re just 
trying to do better and better,” says Heimberg. 
“The sky’s the limit, and anything is in play.”

Amber Dance is a freelance science journalist 
in Los Angeles, California.
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“We always need to 
be cautious with 
these new tools.”
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