
Alena Khmelinskaia wants designing 
bespoke proteins to be as simple 
as ordering a meal. Picture a vend-
ing machine, she says, which any 
researcher could use to specify their 

desired protein’s function, size, location, 
partners and other characteristics. “Ideally, 
you would get the perfect design that can 
accomplish all these things together,” says 
Khmelinskaia, a biophysical chemist at Ludwig 
Maximilian University in Munich, Germany.

For the moment, that is just a dream. But 
advances in computational protein design 
and machine learning are bringing it closer 
to reality than ever.

Until a few years ago, researchers altered 
proteins by cloning them into bacteria or yeast, 
and coaxing the microorganisms to mutate 
until they produced the desired product. 
Scientists could also design a protein man-
ually by deliberately altering its amino-acid 
sequence, but that’s a laborious process that 

could cause it to fold incorrectly or prevent 
the cell from producing it at all.

Machine-learning algorithms have changed 
the game entirely. Researchers can generate 
new protein structures on their laptops using 
tools driven by artificial intelligence (AI), such 
as RFdiffusion and Chroma, which were trained 
on hundreds of thousands of structures in the 
Protein Data Bank (PDB). They can identify a 
sequence to match that structure using algo-
rithms such as ProteinMPNN. RoseTTAFold 
and AlphaFold, which calculate structures 
from a sequence, can predict whether the new 
protein is likely fold correctly. Only then do 
researchers need to synthesize the physical 
protein and test whether it works as predicted.

In many cases, it does. “Once people see the 
experimental data, they get that this thing can 
work,” Khmelinskaia says of AI protein design. 
“There’s excitement for what is possible.” 
This year’s Nobel chemistry prize committee 
agrees: AlphaFold and other programs that 

predict or design protein structures won their 
developers the 2024 prize. “That we can now 
predict protein structures and design our 
own proteins confers the greatest benefit to 
humankind,” the announcement read.

Still, the greatest benefits could be yet to 
come. Nature spoke to specialists about the 
biggest challenges facing protein design and 
what it will take to overcome them. Here’s what 
they said.

Building reliable binders
One of the early challenges for protein 
designers was to predict how proteins bind 
to one another — a major goal for the pharma-
ceutical industry, because ‘binders’ for a given 
protein could serve as drugs that activate or 
inhibit disease pathways. Generative AI pro-
grams such as RFdiffusion and AlphaProteo 
have made this task straightforward, says 
David Baker, a pioneer of computational 
protein design and 2024 Nobel chemistry 

FIVE TASKS THAT STILL 
CHALLENGE PROTEIN DESIGNERS
Tools such as Rosetta and AlphaFold have redefined the protein-engineering 
landscape. But some problems remain out of reach, for now. By Sara Reardon
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laureate at the University of Washington in 
Seattle, whose team developed RFdiffusion 
and other protein-design tools. “If you want 
to target some cancer protein, for example, 
and you’d like a binder to it, the methods we’ve 
developed will generally give you a solution to 
that problem,” he says.

Some proteins, such as the transmembrane 
molecules that stud the surfaces of immune 
cells, remain tough to crack. But for most 
proteins, generative AI software can gener-
ate binders that wrap precisely around their 
target, like a hand. For instance, in 2023, Baker 
and his colleagues used RFdiffusion to create 
sensor proteins that light up when they attach 
to specific peptide hormones1.

Protein–protein binding algorithms have 
been successful because their language is 
simple: all natural proteins are made of the 
same 20 amino acids. And with hundreds of 
thousands of structures and protein–protein 
interactions available in the PDB, “that’s kind 
of like an ideal case for machine learning”, says 
computer scientist John Ingraham at Generate 
Biomedicines, a company in Somerville, 
Massachusetts, that uses AI to design thera-
peutics. Teams such as his have been using AI 
tools to design large libraries of simple bind-
ing proteins, in the hope of applying them to 
research problems.

But binders become less reliable the fewer 
data the AI has to train on, as is the case for pro-
teins intended to bind to drugs and other small 
molecules. Many pharmaceutical companies 
have their own databases of small-molecule 
structures and how they interact with proteins, 
but these are closely held secrets. The public 
data that exist are not always well annotated, 
and the structures that are available tend to 
represent just a few molecular classes, says 
Jue Wang, a computational biologist at Google 
DeepMind in London. “With a model trained 
on that, you might not necessarily learn good 
general rules about chemistry,” he says.

Earlier this year, DeepMind released 
AlphaFold3, the software’s latest iteration, 
which predicts how binding to small mol-
ecules affects a protein’s shape. “For the 
interactions of proteins with other molecule 
types, we see at least a 50% improvement com-
pared with existing prediction methods, and 
for some important categories of interaction 
we have doubled prediction accuracy,” the 
company says.

But the challenge isn’t completely solved, 
Baker says. For instance, just because some-
thing binds well doesn’t mean it will work 
as intended. A binder protein can activate 
its target or block it, but programs such as 
AlphaFold cannot necessarily tell the differ-
ence, Khmelinskaia says. (Some algorithms 
do incorporate function, she notes, includ-
ing ESM3. Developed by a company called 
EvolutionaryScale in New York City, that 
software was trained on 2.7 billion protein 

sequences, structures and functions.)
Generative AI systems have other limitations, 

including a tendency to ‘hallucinate’ protein 
structures that cannot exist in nature. The AI 
is “always trying to please”, says Mohammed 
AlQuraishi, a computational biologist at 
Columbia University in New York City. “It never, 
ever says, ‘no, this is not doable’.”

A better understanding of biophysics might 
help, Ingraham says, but so would more and 
better data on how proteins bind to molecules. 
His company is attacking the problem through 
brute force, using as much data on protein 
interactions and functions as possible and com-
bining it with high-throughput data on designs 
generated by their model. “We’re trying to find 
general solutions,” he says, “then just leverage 
as much protein information as we can.”

New catalysts
Scientists have high hopes that computational 
tools will lead to enzymes with entirely new 
functions: catalysts that can scrub carbon 
dioxide from the atmosphere, for instance, 
or enzymes that efficiently break down envi-
ronmental plastics. The logical place to start 
is with natural enzymes that perform similar 
functions. An enzyme that breaks hydrogen–
silicon bonds, for instance, might form the 

scaffold for an artificial enzyme that breaks 
carbon–silicon bonds.

But similar protein shapes don’t necessarily 
equate to similar functions, and enzymes that 
look nothing alike can carry out identical tasks. 
Working out those connections — and how to 
recreate functions — is a major challenge in 
protein design, AlQuraishi says. “We don’t 
speak function, we speak structure.”

Moreover, natural enzymes are not 
necessarily ideal starting points for a new 
intended activity. Debora Marks, a systems 
biologist at Harvard Medical School in Boston, 
Massachusetts, likens repurposing enzymes 
to building a modern road system atop a city’s 
existing, antiquated layout. “If you could start 
again, you wouldn’t necessarily do it like that,” 
she says.

That said, the biophysics of natural enzymes 
can inform de novo designs, Marks says: 
“Nature has done billions of evolutionary 
experiments for you.” Typically, research-
ers determine which parts of an enzyme are 
important by analysing how similar they are 
across species. Evolutionarily conserved 
sequences often have similar structures, 
whereas dissimilar ones might just be junk 
that slows an enzyme down.

But it’s not always immediately apparent 
which parts are important, Ingraham says. A 
seemingly useless amino-acid chain on the side 
of an enzyme, for instance, might affect how 
tightly a protein can bind to other molecules 
or its ability to flip between conformational 
states.

Some researchers are developing methods 
for finding those useful parts. In an August 
preprint, Baker and his colleagues used 
RFdiffusion to create a set of enzymes known 
as hydrolases, which use water to break chem-
ical bonds through a multistep process2. Using 
machine learning, the researchers analysed 
which parts, or motifs, of the enzymes were 
active at each step. They then copied these 
motifs and asked RFdiffusion to build entirely 
new proteins around them. When the research-
ers tested 20 of the designs, they found that 
two of them were able to hydrolyse their sub-
strates in a new way. “That had been a goal for 
a long time, and that’s been solved,” Wang says.

Still, moving active sites into new protein 
environments can be tricky, warns Martin 
Steinegger, a computational biologist at 
Seoul National University. Without the rest 
of its protein to stabilize the structure or per-
form functions that researchers haven’t yet 
identified, an isolated motif might bind to its 
target and never let go. Proteins, Steinegger 
explains, are not static objects, but dynamic. 
“Whenever dynamics comes in, we are just not 
really great in modelling this.”

Conformational changes
Proteins generally don’t have just one shape; 
they open, close, twist and flex. These confor-
mations change depending on factors such as 
temperature, pH, the chemical environment, 
and whether they’re bound to other molecules.

Yet, when researchers attempt to solve 
the structure of a protein experimentally, 
they often end up seeing only the most sta-
ble conformation, which isn’t necessarily the 
form the protein takes when it’s active. “We 
take these snapshots of them, but they’re 
wiggly,” says Kevin Yang, a machine-learning 
scientist at Microsoft Research in Cambridge, 
Massachusetts. To truly understand how a pro-
tein works, he says, researchers need to know 
the whole range of its potential movements 
and conformations — alternative forms that 
aren’t necessarily catalogued in the PDB.

Calculating all the ways in which proteins 
might move is astronomically difficult, even 
for a supercomputer. A protein with 100 amino 
acids — small by protein standards — could 
assume at least 3100 possible conformations, 
says Tanja Kortemme, a bioengineer at the 
University of California, San Francisco. “Our 
understanding of physics is pretty good, but 
incorporating this is limited by the number of 
possibilities we need to compute.”

Machine learning can help to narrow them 
down, and Microsoft and other companies are 

“We’re trying to find general 
solutions, then just leverage 
as much protein information 
as we can.”
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developing ways to speed up the calculations 
needed to find a protein’s conformation. But 
AI models are limited by a lack of good train-
ing data, Wang says: “Ground truth actually 
generally doesn’t exist, so how do you know 
you’ve even gotten the right answer?”

Kortemme says the field is chipping away 
at this problem by designing large libraries of 
proteins — both natural and synthetic — and 
mutating them to reveal their dynamics. For 
instance, she, Baker and others are working 
on proteins that can be manually switched 
between two conformations by adding cer-
tain binding partners3. Such designer proteins 
could not only help to train AI models but also 
serve as building blocks for more-complex 
molecular machines, such as enzymes that 
convert chemical energy to mechanical energy 
to do cellular work.

Other teams have developed algorithms 
(such as AF-Cluster) that inject a degree of 
randomness into their predictions to explore 
alternative conformations. But whether those 
approaches will be applicable across protein 
classes remains unclear, Steinegger says.

Complex creations
Enzymes aren’t the only protein class that 
researchers care about. New proteins could 
also prove useful as building blocks, for 
instance by self-assembling into structures 
that carry cargo into cells, generate phys-
ical force, or unfold misfolded proteins in 
disorders such as Alzheimer’s.

Computational design of these complex 
structures is already making an impact. In 2022 
and 2023, respectively, South Korea and the 
United Kingdom approved emergency use of 
a COVID-19 vaccine that was the first medical 
product made from computationally designed 
proteins. Known as SKYCovione, the vaccine is 
a nanoparticle with two protein components 
that spark an immune response against the 
spike protein of the virus SARS-CoV-2. In clin-
ical trials, SKYCovione generated three times 
the level of antibodies as did a commercial vac-
cine, and its success, Khmelinskaia says, shows 
that computational protein design is ready for 
the real world. “Now it’s really possible to start 
targeting a lot of interesting pathways that 
previously were not really possible,” she says.

Khmelinskaia’s laboratory is using 
machine-learning algorithms to develop 
hollow nanoparticles that could, among 
other things, carry drugs or toxins into cells or 
sequester unwanted molecules. That requires 
understanding the designed proteins’ confor-
mational dynamics, she says, in that the particle 
and its payload need to be able to pass through 
the cell’s membrane and then open (or close).

But that’s just one function. With a more 
complex structure such as the bacterial 
flagellum, machine learning can only 
do so much  — there just aren’t enough 
well-understood examples to work from. “If we 

had 100,000 or a million different molecular 
machines, maybe we could train a generative 
AI method to generate machines from scratch, 
but there aren’t,” Baker says.

That means that human researchers need 
to think about the components that make up 
a molecular machine — a motor, for instance, 
or a protein that ‘walks’ along another pro-
tein — and use design tools to create those 
building blocks one by one. Such components 
might include molecular switches, wheels and 
axles, or ‘logic gate’ systems that only function 

under certain conditions. “You don’t need to 
reinvent the wheel every time you make a 
complex machine,” explains Kortemme. Her 
lab is designing cell-signalling molecules 
that could be incorporated into synthetic 
signal-transduction cascades.

And it is in the clever recombination of these 
parts that human ingenuity will come to the 
fore, Wang says. “We’re starting to create the 
screws and bolts and levers and pulleys of pro-
teins,” he says. “But what are you going to use 
that pulley for? That’s the most interesting and 
the most challenging aspect.”

Learning from mistakes
Khmelinskaia’s vending-machine vision 
notwithstanding, even the best prediction 
algorithms are some way from creating an 
accurate protein in one take. “It used to be that 
99.99% of the time, it doesn’t work,” AlQuraishi 

says. “Now it’s more like it only fails 99% of 
the time.”

That’s partly a problem of logistics, 
Steinegger says. Computational researchers 
can run their algorithms over and over until 
they find something that looks like it will work, 
and algorithm-design teams such as his own 
“have new innovations about every three or 
four months”. Verifying the designed proteins 
in a biological system, Steinegger estimates, 
might take two years, by which point the 
software has already moved on.

This mismatch means that algorithms rarely 
get the chance to learn from their mistakes. 
Researchers tend not to publish negative 
results, even if those failures yielded poten-
tially useful information such as a protein’s 
cellular toxicity or stability under certain con-
ditions. Barring radical changes in scientific 
funding models to incentivize such disclo-
sures, researchers must get creative. “It’s 
extremely challenging to build a team that 
actually can cover all these facets at once,” 
Khmelinskaia explains, referring to the bench 
and computational sides of protein-design 
research. So, collaboration is a must.

“We’re kind of at this stage where the 
computer resources and the data are both 
ready, and that’s why it’s become such a 
popular field,” Yang says. “The more people 
work together, the faster they progress.”

Sara Reardon is a freelance journalist based in 
Bozeman, Montana.
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Alena Khmelinskaia is developing hollow nanoparticles with the help of machine learning.

“It used to be that 99.99% 
of the time, it doesn’t work. 
Now, it’s more like it only 
fails 99% of the time.”
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