
As generative artificial intelligence (AI) mod-
els — from Open AI’s ChatGPT to Meta’s Llama 
and beyond — become more available, the 
amount of AI-generated content on the Inter-
net is swelling. AI-generated blogs, images 
and other content1 are now commonplace 
(see go.nature.com/3yd2czz). And although 
the effects of an AI-generated Internet on 
humans remain to be seen, on page 755, Shu-
mailov et al.2 report that the proliferation 

of AI-generated content online could be 
devastating to the models themselves. 

Conventional generative AI models learn 
to create realistic content by extracting sta-
tistical patterns from large swathes of Inter-
net data — terabytes of articles, chat forums, 
blog posts and images. But what happens to 
the models if those chat forums and blog posts 
are AI-generated, as is increasingly the case? 
Shumailov et al. showed that large language 

intensity (in terms of the amount of timber 
extracted) below which species can persist 
even in the face of forest degradation7. 

Ewers et al. examined the responses of 
hundreds of species to varying intensities 
of selective logging on the island of Borneo 
in the Malaysian state of Sabah. The authors 
identified logging thresholds for conservation 
measures that are proactive (protection) and 
reactive (restoration). This study is a notable 
advance for at least three reasons. 

First, the sheer breadth of the coverage of 
the tree of life is remarkable — the authors 
examined more than 1,500 species (or equiv-
alent taxonomic units) of plants and animals 
varying greatly in key characteristics that 
determine responses to forest degradation, 
such as size, position in the food web and eco-
logical function. Second, the scale of sampling 
is unparalleled in terms of understanding the 
effects of forest degradation on biodiversity 
— 127 surveys across 11 years, with logging 
intensity varying from 0% to 99% of timber 
extracted. Third, Ewers et al. identify two 
thresholds of timber extraction — a ‘change 
point’ at which there is an observable change in 
the probability of the occurrence of a species, 
and a ‘maximum rate point’ at which the rate 
of change in probability of occurrence is most 
rapid.

The authors also assessed the relationship 
between logging intensities and prevalence of 
particular species. For example, bird species 
that declined with greater logging intensity 
included the rhinoceros hornbill (Buceros 
rhinoceros; Fig. 1) and the argus pheasant 
(Argusianus argus). 

The data Ewers and colleagues present have 
implications for conservation management. 
Crucially, the authors find that even minimal 
logging causes species losses, reinforcing the 
importance of primary forests for preserving 
the full complement of tropical biodiversity3. 
Furthermore, forests that have lost less than 
the ‘change point’ (roughly 30% of timber 
mass) retain high levels of biodiversity and 
ecological function, making it worthwhile to 
protect them, taking a proactive conservation 
approach. Over time, natural regeneration in 
such forests should lead to even better conser-
vation outcomes without the need for expen-
sive active restoration. 

At 70% timber-biomass loss, the ‘maximum 
rate point’, most species showed fast declines 
in occurrence. Bringing biodiversity and eco-
system function back to such forests will prob-
ably require targeted and assisted restoration 
measures, such as planting native trees and 
removing invasive species; in other words, 
reactive conservation strategies. Because 
the rate of reduction in biodiversity is greatest 
at 70% of timber biomass loss, even small 
attempts to reverse degradation should lead 
to valuable biodiversity gains. Forests between 
30% and 68% of timber biomass loss might 
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Generative AI models are now widely accessible, enabling 
everyone to create their own machine-made something. But 
these models can collapse if their training data sets contain 
too much AI-generated content. See p.755

need some degree of active intervention.
Many of the other patterns in Ewers and 

colleagues’ study mirror known effects of 
selective logging — for instance, larger species 
and dietary or habitat specialist species are 
disproportionately negatively affected com-
pared with small and generalist species7.

Although the potential of the authors’ 
findings to inform conservation policy for 
tropical biodiversity is immense, several 
questions remain. Whether these 30% and 
68% thresholds apply to tropical forests and 
their biodiversity across the world needs 
further investigation. Although much more 
exhaustive in scope and coverage than any 
similar work, the data presented by Ewers and 
colleagues all come from a single location — 
from the Stability of Altered Forest Ecosys-
tems (SAFE) Project. Bornean flora and fauna 
might respond to forest degradation in a dif-
ferent way from Amazonian or African species, 
given differences in evolutionary history and 
contemporary environments8. 

The continuing climate crisis adds further 
uncertainty. The species composition of eco-
logical communities even in primary forests 
has been altered by climate change, shifting 
the baseline against which degraded forest 
communities are compared9. Furthermore, 
interactions between climate change and 
forest degradation could mean that the same 
species respond differently to climate change 
in primary and degraded forests10. Whether 
currently observed patterns will hold in the 
future despite the effects of climate change 
on biodiversity remains to be seen.

Forest degradation, in most cases, does 

not operate alone. It is often accompanied 
by other threats to biodiversity, such as the 
proliferation of roads (causing habitat frag-
mentation), hunting, fire and invasion by 
non-native species11. The precise mix of the 
intensities of these concomitant threats will 
vary from site to site, adding further com-
plexity and uncertainty for biodiversity and 
conservation outcomes. Finally, biodiver-
sity or ecological value is one of a variety of 
potentially conflicting considerations for 
conservation, including economics, cultural 
considerations, politics and social justice. 
Whether the recommendations of Ewers et al. 
are implemented will be governed by a multi-
tude of factors.
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Figure 1 | Training an artificial intelligence (AI) model on its own output.  
a, An AI model will generate an image of a dog by learning from sets of real images, 
in which common dog breeds, such as golden retrievers, are over-represented, and 
rarer breeds, such as French bulldogs, Dalmatians, Pembroke Welsh corgis and 
petit basset griffon vendéens, are under-represented. b, The output of the model 

will therefore be more likely to resemble a golden retriever than a rarer breed. c, 
If the model is then trained on its own generated output, it might forget the more 
obscure dog breeds. Shumailov et al.2 found that this is a general principle in the 
large-language-model setting; after several cycles of training the models on their 
own generated data, AI models eventually generate nonsensical outputs (d).
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c Model collapsed

models (LLMs) ‘collapse’ when trained on their 
own generated content: after several cycles of 
outputting content and then being trained on 
it, the models produce nonsense.

This model collapse occurs because training 
models on their own generated content causes 
them to ‘forget’ the less-common elements of 
their original training data set (Fig. 1). Imagine 
a generative-AI model tasked with generating 
images of dogs. The AI model will gravitate 
towards recreating the breeds of dog most 
common in its training data, so might over-rep-
resent the golden retriever compared with the 
petit basset griffon vendéen, given the relative 
prevalence of the two breeds. If subsequent 
models are trained on an AI-generated data 
set that over-represents golden retrievers, 
the problem is compounded. With enough 
cycles of over-represented golden retrievers, 
the model will forget that obscure dog breeds 
such as petit basset griffon vendéens exist and 
generate pictures of just golden retrievers. 
Eventually, the model will collapse, render-
ing it unable to generate meaningful content.  

Although a world overpopulated with 
golden retrievers doesn’t sound too bad, 
consider how this problem generalizes to the 
text-generation models examined by Shu-
mailov and colleagues. When AI-generated 
content is included in data sets that are used 
to train models, these models learn to generate 
well-known concepts, phrases and tones more 
readily than they do less-common ideas and 
ways of writing. This is the problem at the heart 
of model collapse.  

Among other things, model collapse 
poses challenges for fairness in generative 
AI. Collapsed models overlook less-common 
elements from their training data, and so 
fail to reflect the complexity and nuance of 

the world. This presents a risk that minority 
groups or viewpoints will be less represented, 
or potentially erased. As the authors recog-
nize, concepts or phrases that seldom feature 
in LLM training data are often the ones that 
are most relevant to marginalized groups. 
Ensuring that LLMs can model them is essen-
tial to obtaining fair predictions — which will 
become more important as generative AI mod-
els become more prevalent in everyday life.

So how can this problem be mitigated? Shu-
mailov et al. discuss the possibility of using 
watermarks — invisible but easily detecta-
ble signals that are embedded in generated 
content — to enable easy identification and 
removal of AI-generated content from training 
data sets. Many generative-AI watermarks have 
been proposed and are used by commercial 
model providers such as Meta, Google and 
OpenAI.

Unfortunately, watermarks are not a pana-
cea. Researchers have found that watermarks 
can be easily removed from AI-generated 
images3. Sharing watermark information 
also requires considerable coordination 
between AI companies, which might not be 
practical or commercially viable. Such coordi-
nation efforts suffer from a sort of prisoner’s 
dilemma: if company A withholds information 
about its watermarks, its generated content 
could be used to train company B’s model, 
resulting in B’s failure and A’s success. Other 
model providers could also simply choose not 
to watermark the output of their models. 

Although Shumailov et al. studied model 
collapse in text-generation models, future 
work should investigate this phenomenon 
in other generative models, including multi-
modal models (which can produce images, 
text and audio) such as GPT-4o. Furthermore, 

the authors did not consider what happens 
when models are trained on data generated 
by other models, rather, they focused on the 
results of a model trained on its own output. 
Given that the Internet is populated by data 
produced by many models, the multi-model 
scenario is more realistic — albeit more com-
plicated. Whether a model collapses when 
trained on other models’ output remains to 
be seen. If so, the next challenge will be to 
determine the mechanism through which the 
collapse occurs. 

As Shumailov et al. note, one key implica-
tion of model collapse is that there is a ‘first-
mover’ advantage in building generative-AI 
models. The companies that sourced train-
ing data from the pre-AI Internet might have 
models that better represent the real world. 
It will be interesting to see how this plays out, 
as more companies race to make their mark 
in the generative-AI space — and, in doing so, 
populate the Internet with increasing amounts 
of AI-produced content.
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