
People usually talk about the race to the 
bottom in artificial intelligence as a bad 
thing. But it’s different when you’re dis-
cussing loss functions.

Loss functions are a crucial but 
frequently overlooked component of useful 
artificial intelligence (AI), and they’re all about 
getting to the bottom — albeit of a literal curve 
on a graph — as quickly as possible. When training 
an algorithm to automate tedious data analysis, 
such as looking for specific features in millions 
of photographs, you need a way of measuring its 
performance. That’s the ‘loss function’: it meas-
ures an algorithm’s error relative to the ‘ground 
truth’ of the data — information that is known to 
be real or true. Then you adjust the algorithm’s 
parameters, rinse and repeat, and hope the error 
is smaller next time. “You’re trying to find a min-
imum: the point where the error is as small as 
possible — hopefully zero,” says Anna Bosman, 
a computational-intelligence researcher at the 
University of Pretoria. 

Dozens of off-the-shelf loss functions have 
been written. But choose the wrong one, or 
just handle it badly, and the algorithm can 
lead you astray. It could blatantly contradict 
human observations, make random fluctua-
tions (known as experimental noise) look like 
data, or even obscure the central results of an 
experiment. “There are lots of things that can 
go wrong,” Bosman says. And worst of all, the 
opacity of AI means you might not even know 
that you’ve been misled.

That’s why a growing number of scientists 
are abandoning ready-made loss functions 
and constructing their own. But how do 
they get it right? How do you make a home-
made loss function your go-to tool and not a 
time-swallowing mistake?

Error assessment
Machine-learning algorithms are gener-
ally trained on annotated data, or by being 
told when they get the answer wrong. Loss 

functions provide a mathematical measure 
of wrongness, but there are multiple ways to 
quantify that. 

‘Absolute error’ functions, for example, 
report the difference between the algorithm’s 
prediction and the target value. Then there’s 
mean squared error: square the differences 
between your predictions and the ground 
truth, and then average them out across the 
whole data set. 

Mean squared error is a simple, straight-
forward and proven approach that works well 
when errors are relatively small and consistent. 
But it can be problematic if your data are full of 
outliers, because the algorithm amplifies their 
impact. A loss function called pseudo-Huber (a 
smooth approximation of an approach called 
the Huber loss function) considers whether 
each data point’s error is large or small, provid-
ing a compromise between the mean squared 
error and absolute error loss functions.
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THE MATHS  
THAT DRIVES AI
Loss functions measure algorithmic errors in artificial- 
intelligence models, but there’s more than one way to do that.  
Here’s why the right function is so important. By Michael Brooks



Huber are most useful for regression analysis, 
which uses past data on continuous variables 
such as height or weight in a population to 
predict what shape future data sets will take 
(see  ‘Quantifying loss’). Classification tasks, 
by contrast, answer questions such as what 
type of object something is and how many 
of them are in the data set. In this case, the 
machine-learning algorithm determines the 
probability that an object belongs to a particu-
lar class — how likely it is that a particular col-
lection of pixels represents a dog, for example. 
The most useful loss functions include cross 
entropy, a measure that compares probability 
distributions related to the model’s output and 
the real-world value (also known as maximum 
likelihood), and hinge loss. The latter finds the 
curve that is the farthest possible distance 
from every data point, providing the cleanest 
possible decision about which category a data 
point falls into. 

These generalized loss functions are not 
always the best option, however. Take Arjun 
Raj’s experience, for example.

A geneticist at the University of Pennsylvania 
in Philadelphia, Raj uses fluorescence micros-
copy to quantify gene expression in single cells. 
In these experiments, each RNA transcript is a 
discrete spot in an image: the trick is to count 
the spots and assign them to the correct cell. 
Finding the spots — which are two or three pix-
els across — is trivial for a human. “One summer, 
I had a high-school student working with me 
who had never seen these images, and I was 
able to teach him how to perfectly annotate 
the images within two minutes,” says William 

Niu, a former undergraduate student in Raj’s 
laboratory. 

Unfortunately, the lab generates data sets 
that might represent thousands of fluorescent 
spots in millions of cells, too many to analyse by 
hand. Even more unfortunately, the analysis is 
much harder for machines than it is for humans. 
When Raj and his colleagues tried to automate 
the process, they found that no known loss 
function could return a reliable result. 

The problem mainly came down to ‘class 
imbalance’, Raj says: when spots are few and 
far between, the algorithm might think that it 

is performing well if it simply labels every pixel 
as ‘not-spot’. But that gives a catastrophically 
high false-negative rate. “You could make a 
really ‘good’ classifier that just said there’s 
no spots in this image because 99.9% of the 
time, there are no spots,” Raj says. “It’s very, 
very accurate in some sense, even though it’s 
basically doing nothing useful at all.”

Niu, Raj and others in their lab worked 
together to translate their understanding of 
the issues into a loss function called SmoothF1 
(ref. 1). F1 is a metric that balances false neg-
atives against false positives. However, the 
mathematical function behind F1 cannot be 
differentiated, which means it can’t be used to 

train a neural network, because it lacks a way 
to minimize the algorithm’s error. SmoothF1 
approximates the F1 score in a way that com-
pensates for class imbalance while allowing 
the algorithm to find its way to the bottom 
of the error slope. The team then used this 
function to drive a spot-detection algorithm 
called Piscis. 

The work Niu did “made a huge difference to 
our lab”, Raj says. “It has allowed us to power 
through analyses with much higher through-
put.” But Piscis should be useful for a range 
of applications, Niu says. “Theoretically, our 
method should be able to get better perfor-
mance on any type of object in which the 
objects that you’re looking for occupy less 
than, say, 5% of the image,” he says. 

Pedro Seber, a chemical-engineering 
student at the Massachusetts Institute of 
Technology in Cambridge, created his own 
loss function to teach a machine-learning algo-
rithm to predict sites of glycosylation — sugar 
chain addition — in mammalian proteins. Such 
a task is potentially useful in understanding 
the pathways of diseases, including cancer2.

Seber didn’t set out to delve into the 
machine-learning side of his research — he was 
trying to train his model using a loss function 
based on cross entropy, but this impaired the 
model’s performance. “Sometimes, the model 
with the lowest cross entropy was not necessar-
ily the model with the best metrics,” Seber says. 
Digging deeper, he found that this was because 
the cross entropy didn’t actually relate to the 
prediction task. “It was optimizing something 
that I didn’t really care about,” he explains.

Seber decided to create a bespoke loss func-
tion that focused on something he did care 
about: a tweaked version of the Matthews cor-
relation coefficient (MCC), a function similar 
to F1 that provides a metric for training an algo-
rithm. It might not have the snappiest name, 
but Seber’s ‘weighted focal differentiable MCC 
loss function’ boosted MCC performance by 
about 10%. That’s not very high, he acknowl-
edges, “but at that point, every improvement 
counts”. Seber says that even this improvement 
is enough to achieve state-of-the-art perfor-
mance — a highly desirable outcome because 
glycosylation sites represent potential targets 
for drug and biotherapeutic development.

Not every venture into creating loss func-
tions will be a huge success, warns Andrew 
Engel, a data scientist at the Pacific Northwest 
National Laboratory in Richland, Washington. 
Engel has had mixed results, for instance, with 
a loss function designed to help neural net-
works assess the redshift of galaxies in tele-
scope images3 — a measure used to derive the 
distance of objects from Earth. 

Engel had wondered whether supplement-
ing an existing loss function with astronomical 
knowledge might improve its performance. 
To his surprise, it didn’t, probably because 
the new information he was feeding the 

QUANTIFYING LOSS
There are countless ways to measure accuracy 
in artificial intelligence (AI). Here are three of the 
most popular for regression tasks — those that 
try to predict what form data will take. 

Mean absolute error
Calculates the magnitude of the di�erence between 
the AI model’s performance and ground truth. 

Variables: n = number of predictions; Yi = observed value; 
Ŷi = predicted value; δ = tuning parameter.

Mean squared error
Averages the square of the di�erence between 
the model’s performance and the ground truth. 

Huber loss
Acts like MSE for small deltas and like MAE for 
large deltas (outliers), providing a compromise 
between the two.
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“The nice thing about this 
field is we get constant 
feedback on whether our 
idea is working or not.”



algorithm was effectively reiterating what it 
already knew. But at least he didn’t waste a lot 
of time: training the model wasn’t particularly 
time-consuming, meaning he could test dif-
ferent approaches — to “fail quickly”, as Engel 
puts it. “The nice thing about this field is we 
get constant feedback on whether our idea is 
working or not.” 

What to measure?
That said, researchers can’t always articulate 
what their loss function should be measuring. 
You want the AI to do better, but in what way? 
“There’s always going to be some barrier in 
translating what your desires are to what it 
means mathematically,” Niu says. 

That view is supported by a study4 pub-
lished in 2023 by engineering researchers 
Hansol Ryu and Manoj Srinivasan at the 
Ohio State University in Columbus. Ryu and 
Srinivasan asked scientists and engineers to 
manually perform the work of a loss func-
tion, fitting curves to a variety of data sets by 
eye. To the team’s surprise, each individual’s 
approach varied from data set to data set and 
person to person. 

“Humans are a lot more variable than com-
puter algorithms,” Ryu says. For instance, 
many of those who said they were trying to 
visualize mean-squared error were subcon-
sciously using a different method — one that 
involved finding the most frequently occur-
ring value, called the mode of the data set, 
instead of the mean. What’s more, researchers 
were inconsistent in how they handled outli-
ers, and they seemed to reject outliers more 
as the amount of data increased. 

Complicating matters, training an AI is 
about more than minimizing error. Research-
ers must also avoid ‘overfitting’, in which the 
training has been too narrow to allow the 
model to work with real-world data — creat-
ing a loss function that is extremely efficient, 
but not in a good way. “If your model is overly 
complex, then you might have an extremely 
complex [function] that crosses every single 
point in your data set,” Bosman says. “On 
paper, it looks like your model is absolutely 
great, but if you try to apply it to some real 
points, the output will be absolutely horren-
dous and the predictions will be completely 
wrong.”

However, Bosman’s main advice is: know 
your noise. “In the real world, data is very, very 
messy,” she points out. A generic loss function 
makes assumptions — which might not neces-
sarily apply to your data. Mean squared error, 
the most common loss function for regression 
problems, assumes a normal distribution of 
data points, for example. But your data might 
conform better to a different shape. Bosman is 
part of a team that has investigated loss func-
tions that use the Cauchy distribution for such 
data. This distribution looks similar to a normal 
distribution but has heavier tails — that is, more 

of the data lie outside the most common values. 
Cauchy-based loss functions can give a better 
performance when there is noise in the data 
that doesn’t conform to a normal distribution, 
she says. 

Choose your function
It’s hard to overstate the importance of such 
considerations, says Jonathan Wilton, a 
machine-learning graduate student at the Uni-
versity of Queensland in Brisbane, Australia. 
“If you’re in a situation where you believe that 
there are probably errors or problems with 
your data … then it’s probably a good idea to 
consider using a loss function that’s not so 
standard,” he says.

Working with Nan Ye, a statistics, data-science 
and machine-learning researcher at the Univer-
sity of Queensland, Wilton constructed a frame-
work for creating loss functions that are robust 

against noise in classification tasks5. Here, the 
problem can be summed up as mislabelling: 
training data that has a dog incorrectly labelled 
as a cat, for example. That’s a common problem 
in machine learning, Ye says. “If your loss func-
tion is not robust to that kind of noise, then you 
might end up encouraging the model to fit the 
noise, not the regularities in the data.”

To create his function, Wilton started with a 
loss function for a machine-learning architec-
ture called a decision tree — something that 
might analyse a slew of highly disparate med-
ical information to make a disease diagnosis, 
for example. Now, Wilton is trying to develop an 
equivalent function for neural-net architectures. 
Decision trees, he explains, are “really versatile”. 
“But neural nets are particularly useful in situa-
tions where you collect very large data sets, in 
the order of hundreds of thousands or millions 
of examples, all of a similar type.” So far, he says, 
the results are promising. 

Beyond knowing your noise, one crucial 
thing specialists advise is incorporating 
‘domain knowledge’: seek to create a loss func-
tion that reflects what a real-world practitioner 
knows about the system. The reason Niu’s loss 
function was so successful, Raj says, is that Niu 
“really paid attention to what real users needed 
and how to make it work best for them”.

Engel agrees. “I see many new AI scientists 
being deployed to problems or data sets 
where they lack domain knowledge,” he says. 
“In those cases, they should sit down with a 
domain expert for a long time to really ingest 
and jargon-bust that field.” It might take a few 

iterations to apply that knowledge successfully, 
he says, but it’s worth the effort. 

That said, as the pool of available loss func-
tions grows larger, picking the right function 
will only grow more complex. Programming 
libraries such as PyTorch and scikit-learn 
allow researchers to swap loss functions fairly 
easily, and Bosman suggests playing around 
with several functions to see what works. “My 
recommendation is usually to try [a couple of 
options], train for 30 times with each, and then 
we have a statistical sample and we can figure 
out if one is statistically better on average than 
the other,” she says. 

The problem could get easier soon, however. 
Wilton, who is curating a library of loss func-
tions for decision trees, says one possibility is a 
unification of loss functions — an overarching 
method that will work broadly across many 
kinds of data and problem. Another option is 
a machine-learning algorithm that chooses 
and optimizes its own loss function, or what 
Bosman calls a ‘meta-model’ that could recom-
mend the best loss function for your problem 
from a list of available options. 

Niu imagines an even more radical idea: you 
just tell a generative AI about your research, 
and it will recommend the right tool. “A gen-
erative AI model might just give you this for 
free,” he suggests.

Some researchers are already doing this. 
Machine-learning researcher Juan Terven at 
the National Polytechnic Institute in Mexico 
City regularly converses with the chatbot 
ChatGPT about his loss function requirements. 
“You need to specify the nature of your prob-
lem and the nature of your data, but it will give 
you a list of things to try,” he says. Last year, 
Terven and his colleagues conducted an exten-
sive review of loss functions and their applica-
tions6 and is impressed by ChatGPT’s ability to 
select the right ones.

In the end, says Ye, finding the best loss func-
tion for your problem “is both a science and an 
art”. A science, because loss functions can be 
quantified and compared; and an art, because 
the blending of maths and domain knowledge 
often requires creative thinking. But whether 
art or science, loss functions deserve your 
attention. Ignore them, and AI will remain a 
black, and sometimes befuddling, box. 

Michael Brooks is a science writer in Lewes, 
UK.
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“If your loss function is  
not robust to that kind  
of noise, then you might  
end up encouraging the 
model to fit the noise.”


