
People usually talk about the race to the
bottom in artificial intelligence as a bad
thing. But it’s different when you’re dis-
cussing loss functions.

Loss functions are a crucial but
frequently overlooked component of useful
artificial intelligence (AI), and they’re all about
getting to the bottom — albeit of a literal curve
on a graph — as quickly as possible. When training
an algorithm to automate tedious data analysis,
such as looking for specific features in millions
of photographs, you need a way of measuring its
performance. That’s the ‘loss function’: it meas-
ures an algorithm’s error relative to the ‘ground
truth’ of the data — information that is known to
be real or true. Then you adjust the algorithm’s
parameters, rinse and repeat, and hope the error
is smaller next time. “You’re trying to find a min-
imum: the point where the error is as small as
possible — hopefully zero,” says Anna Bosman,
a computational-intelligence researcher at the
University of Pretoria.

Dozens of off-the-shelf loss functions have
been written. But choose the wrong one, or
just handle it badly, and the algorithm can
lead you astray. It could blatantly contradict
human observations, make random fluctua-
tions (known as experimental noise) look like
data, or even obscure the central results of an
experiment. “There are lots of things that can
go wrong,” Bosman says. And worst of all, the
opacity of AI means you might not even know
that you’ve been misled.

That’s why a growing number of scientists
are abandoning ready-made loss functions
and constructing their own. But how do
they get it right? How do you make a home-
made loss function your go-to tool and not a
time-swallowing mistake?

Error assessment
Machine-learning algorithms are gener-
ally trained on annotated data, or by being
told when they get the answer wrong. Loss

functions provide a mathematical measure
of wrongness, but there are multiple ways to
quantify that.

‘Absolute error’ functions, for example,
report the difference between the algorithm’s
prediction and the target value. Then there’s
mean squared error: square the differences
between your predictions and the ground
truth, and then average them out across the
whole data set.

Mean squared error is a simple, straight-
forward and proven approach that works well
when errors are relatively small and consistent.
But it can be problematic if your data are full of
outliers, because the algorithm amplifies their
impact. A loss function called pseudo-Huber (a
smooth approximation of an approach called
the Huber loss function) considers whether
each data point’s error is large or small, provid-
ing a compromise between the mean squared
error and absolute error loss functions.

Absolute error, mean squared error and G
ET

T
Y

244  |  Nature  |  Vol 631  |  4 July 2024

Work / Technology & tools

THE MATHS
THAT DRIVES AI
Loss functions measure algorithmic errors in artificial-
intelligence models, but there’s more than one way to do that.
Here’s why the right function is so important. By Michael Brooks

Huber are most useful for regression analysis,
which uses past data on continuous variables
such as height or weight in a population to
predict what shape future data sets will take
(see ‘Quantifying loss’). Classification tasks,
by contrast, answer questions such as what
type of object something is and how many
of them are in the data set. In this case, the
machine-learning algorithm determines the
probability that an object belongs to a particu-
lar class — how likely it is that a particular col-
lection of pixels represents a dog, for example.
The most useful loss functions include cross
entropy, a measure that compares probability
distributions related to the model’s output and
the real-world value (also known as maximum
likelihood), and hinge loss. The latter finds the
curve that is the farthest possible distance
from every data point, providing the cleanest
possible decision about which category a data
point falls into.

These generalized loss functions are not
always the best option, however. Take Arjun
Raj’s experience, for example.

A geneticist at the University of Pennsylvania
in Philadelphia, Raj uses fluorescence micros-
copy to quantify gene expression in single cells.
In these experiments, each RNA transcript is a
discrete spot in an image: the trick is to count
the spots and assign them to the correct cell.
Finding the spots — which are two or three pix-
els across — is trivial for a human. “One summer,
I had a high-school student working with me
who had never seen these images, and I was
able to teach him how to perfectly annotate
the images within two minutes,” says William

Niu, a former undergraduate student in Raj’s
laboratory.

Unfortunately, the lab generates data sets
that might represent thousands of fluorescent
spots in millions of cells, too many to analyse by
hand. Even more unfortunately, the analysis is
much harder for machines than it is for humans.
When Raj and his colleagues tried to automate
the process, they found that no known loss
function could return a reliable result.

The problem mainly came down to ‘class
imbalance’, Raj says: when spots are few and
far between, the algorithm might think that it

is performing well if it simply labels every pixel
as ‘not-spot’. But that gives a catastrophically
high false-negative rate. “You could make a
really ‘good’ classifier that just said there’s
no spots in this image because 99.9% of the
time, there are no spots,” Raj says. “It’s very,
very accurate in some sense, even though it’s
basically doing nothing useful at all.”

Niu, Raj and others in their lab worked
together to translate their understanding of
the issues into a loss function called SmoothF1
(ref. 1). F1 is a metric that balances false neg-
atives against false positives. However, the
mathematical function behind F1 cannot be
differentiated, which means it can’t be used to

train a neural network, because it lacks a way
to minimize the algorithm’s error. SmoothF1
approximates the F1 score in a way that com-
pensates for class imbalance while allowing
the algorithm to find its way to the bottom
of the error slope. The team then used this
function to drive a spot-detection algorithm
called Piscis.

The work Niu did “made a huge difference to
our lab”, Raj says. “It has allowed us to power
through analyses with much higher through-
put.” But Piscis should be useful for a range
of applications, Niu says. “Theoretically, our
method should be able to get better perfor-
mance on any type of object in which the
objects that you’re looking for occupy less
than, say, 5% of the image,” he says.

Pedro Seber, a chemical-engineering
student at the Massachusetts Institute of
Technology in Cambridge, created his own
loss function to teach a machine-learning algo-
rithm to predict sites of glycosylation — sugar
chain addition — in mammalian proteins. Such
a task is potentially useful in understanding
the pathways of diseases, including cancer2.

Seber didn’t set out to delve into the
machine-learning side of his research — he was
trying to train his model using a loss function
based on cross entropy, but this impaired the
model’s performance. “Sometimes, the model
with the lowest cross entropy was not necessar-
ily the model with the best metrics,” Seber says.
Digging deeper, he found that this was because
the cross entropy didn’t actually relate to the
prediction task. “It was optimizing something
that I didn’t really care about,” he explains.

Seber decided to create a bespoke loss func-
tion that focused on something he did care
about: a tweaked version of the Matthews cor-
relation coefficient (MCC), a function similar
to F1 that provides a metric for training an algo-
rithm. It might not have the snappiest name,
but Seber’s ‘weighted focal differentiable MCC
loss function’ boosted MCC performance by
about 10%. That’s not very high, he acknowl-
edges, “but at that point, every improvement
counts”. Seber says that even this improvement
is enough to achieve state-of-the-art perfor-
mance — a highly desirable outcome because
glycosylation sites represent potential targets
for drug and biotherapeutic development.

Not every venture into creating loss func-
tions will be a huge success, warns Andrew
Engel, a data scientist at the Pacific Northwest
National Laboratory in Richland, Washington.
Engel has had mixed results, for instance, with
a loss function designed to help neural net-
works assess the redshift of galaxies in tele-
scope images3 — a measure used to derive the
distance of objects from Earth.

Engel had wondered whether supplement-
ing an existing loss function with astronomical
knowledge might improve its performance.
To his surprise, it didn’t, probably because
the new information he was feeding the

QUANTIFYING LOSS
There are countless ways to measure accuracy
in artificial intelligence (AI). Here are three of the
most popular for regression tasks — those that
try to predict what form data will take.

Mean absolute error
Calculates the magnitude of the di�erence between
the AI model’s performance and ground truth.

Variables: n = number of predictions; Yi = observed value;
Ŷi = predicted value; δ = tuning parameter.

Mean squared error
Averages the square of the di�erence between
the model’s performance and the ground truth.

Huber loss
Acts like MSE for small deltas and like MAE for
large deltas (outliers), providing a compromise
between the two.

MAE = ∑
n

n
1—

i=1

i=1

|Yi – Ŷi|

|Yi – Ŷi| ≤ δHuber = ∑
n

n
1—

2
1—

2
1—

i=1

MSE = ∑
n

n
1— (Yi – Ŷi)2

(Yi – Ŷi)2

|Yi – Ŷi| > δδHuber = ∑
n

n
1—

i=1
(|Yi – Ŷi| – δ)

SO
U

R
C

E:
 M

ED
IU

M
.C

O
M

 (
H

T
T

P
S:

//
G

O
.N

A
T

U
R

E.
C

O
M

/3
R

J9
K

SE
)

Nature  |  Vol 631  |  4 July 2024  |  245

“The nice thing about this
field is we get constant
feedback on whether our
idea is working or not.”

algorithm was effectively reiterating what it
already knew. But at least he didn’t waste a lot
of time: training the model wasn’t particularly
time-consuming, meaning he could test dif-
ferent approaches — to “fail quickly”, as Engel
puts it. “The nice thing about this field is we
get constant feedback on whether our idea is
working or not.”

What to measure?
That said, researchers can’t always articulate
what their loss function should be measuring.
You want the AI to do better, but in what way?
“There’s always going to be some barrier in
translating what your desires are to what it
means mathematically,” Niu says.

That view is supported by a study4 pub-
lished in 2023 by engineering researchers
Hansol Ryu and Manoj Srinivasan at the
Ohio State University in Columbus. Ryu and
Srinivasan asked scientists and engineers to
manually perform the work of a loss func-
tion, fitting curves to a variety of data sets by
eye. To the team’s surprise, each individual’s
approach varied from data set to data set and
person to person.

“Humans are a lot more variable than com-
puter algorithms,” Ryu says. For instance,
many of those who said they were trying to
visualize mean-squared error were subcon-
sciously using a different method — one that
involved finding the most frequently occur-
ring value, called the mode of the data set,
instead of the mean. What’s more, researchers
were inconsistent in how they handled outli-
ers, and they seemed to reject outliers more
as the amount of data increased.

Complicating matters, training an AI is
about more than minimizing error. Research-
ers must also avoid ‘overfitting’, in which the
training has been too narrow to allow the
model to work with real-world data — creat-
ing a loss function that is extremely efficient,
but not in a good way. “If your model is overly
complex, then you might have an extremely
complex [function] that crosses every single
point in your data set,” Bosman says. “On
paper, it looks like your model is absolutely
great, but if you try to apply it to some real
points, the output will be absolutely horren-
dous and the predictions will be completely
wrong.”

However, Bosman’s main advice is: know
your noise. “In the real world, data is very, very
messy,” she points out. A generic loss function
makes assumptions — which might not neces-
sarily apply to your data. Mean squared error,
the most common loss function for regression
problems, assumes a normal distribution of
data points, for example. But your data might
conform better to a different shape. Bosman is
part of a team that has investigated loss func-
tions that use the Cauchy distribution for such
data. This distribution looks similar to a normal
distribution but has heavier tails — that is, more

of the data lie outside the most common values.
Cauchy-based loss functions can give a better
performance when there is noise in the data
that doesn’t conform to a normal distribution,
she says.

Choose your function
It’s hard to overstate the importance of such
considerations, says Jonathan Wilton, a
machine-learning graduate student at the Uni-
versity of Queensland in Brisbane, Australia.
“If you’re in a situation where you believe that
there are probably errors or problems with
your data … then it’s probably a good idea to
consider using a loss function that’s not so
standard,” he says.

Working with Nan Ye, a statistics, data-science
and machine-learning researcher at the Univer-
sity of Queensland, Wilton constructed a frame-
work for creating loss functions that are robust

against noise in classification tasks5. Here, the
problem can be summed up as mislabelling:
training data that has a dog incorrectly labelled
as a cat, for example. That’s a common problem
in machine learning, Ye says. “If your loss func-
tion is not robust to that kind of noise, then you
might end up encouraging the model to fit the
noise, not the regularities in the data.”

To create his function, Wilton started with a
loss function for a machine-learning architec-
ture called a decision tree — something that
might analyse a slew of highly disparate med-
ical information to make a disease diagnosis,
for example. Now, Wilton is trying to develop an
equivalent function for neural-net architectures.
Decision trees, he explains, are “really versatile”.
“But neural nets are particularly useful in situa-
tions where you collect very large data sets, in
the order of hundreds of thousands or millions
of examples, all of a similar type.” So far, he says,
the results are promising.

Beyond knowing your noise, one crucial
thing specialists advise is incorporating
‘domain knowledge’: seek to create a loss func-
tion that reflects what a real-world practitioner
knows about the system. The reason Niu’s loss
function was so successful, Raj says, is that Niu
“really paid attention to what real users needed
and how to make it work best for them”.

Engel agrees. “I see many new AI scientists
being deployed to problems or data sets
where they lack domain knowledge,” he says.
“In those cases, they should sit down with a
domain expert for a long time to really ingest
and jargon-bust that field.” It might take a few

iterations to apply that knowledge successfully,
he says, but it’s worth the effort.

That said, as the pool of available loss func-
tions grows larger, picking the right function
will only grow more complex. Programming
libraries such as PyTorch and scikit-learn
allow researchers to swap loss functions fairly
easily, and Bosman suggests playing around
with several functions to see what works. “My
recommendation is usually to try [a couple of
options], train for 30 times with each, and then
we have a statistical sample and we can figure
out if one is statistically better on average than
the other,” she says.

The problem could get easier soon, however.
Wilton, who is curating a library of loss func-
tions for decision trees, says one possibility is a
unification of loss functions — an overarching
method that will work broadly across many
kinds of data and problem. Another option is
a machine-learning algorithm that chooses
and optimizes its own loss function, or what
Bosman calls a ‘meta-model’ that could recom-
mend the best loss function for your problem
from a list of available options.

Niu imagines an even more radical idea: you
just tell a generative AI about your research,
and it will recommend the right tool. “A gen-
erative AI model might just give you this for
free,” he suggests.

Some researchers are already doing this.
Machine-learning researcher Juan Terven at
the National Polytechnic Institute in Mexico
City regularly converses with the chatbot
ChatGPT about his loss function requirements.
“You need to specify the nature of your prob-
lem and the nature of your data, but it will give
you a list of things to try,” he says. Last year,
Terven and his colleagues conducted an exten-
sive review of loss functions and their applica-
tions6 and is impressed by ChatGPT’s ability to
select the right ones.

In the end, says Ye, finding the best loss func-
tion for your problem “is both a science and an
art”. A science, because loss functions can be
quantified and compared; and an art, because
the blending of maths and domain knowledge
often requires creative thinking. But whether
art or science, loss functions deserve your
attention. Ignore them, and AI will remain a
black, and sometimes befuddling, box.

Michael Brooks is a science writer in Lewes,
UK.

1.	 Niu, Z. et al. Preprint at bioRxiv
https://doi.org/10.1101/2024.01.31.578123 (2024).

2.	 Seber, P. Preprint at arXiv https://doi.org/10.48550/
arXiv.2402.17131 (2024).

3.	 Engel, A. & Strube, J. Preprint at arXiv
https://doi.org/10.48550/arXiv.2310.13624 (2023).

4.	 Ryu, H. X. & Srinivasan, M. Preprint at bioRxiv
https://doi.org/10.1101/2023.09.19.558376 (2023).

5.	 Wilton, J. & Ye, N. Preprint at arXiv https://doi.org/
10.48550/arXiv.2312.12937 (2024).

6.	 Terven, J., Cordova-Esparza, D. M., Ramirez-
Pedraza, A. & Chavez-Urbiola, E. A. Preprint at arXiv
https://doi.org/10.48550/arXiv.2307.02694 (2023).

246  |  Nature  |  Vol 631  |  4 July 2024

Work / Technology & tools

“If your loss function is
not robust to that kind
of noise, then you might
end up encouraging the
model to fit the noise.”

