
In late 2021, midway through the COVID-19
pandemic, George Stagg was preparing to
give exams to his mathematics and statis-
tics students at the University of Newcastle,
UK. Some would use laptops, others would

opt for tablets or mobile phones. Not all of them
could even use the programming language that
was the subject of the test: the statistical lan-
guage R. “We had no control, really, over what
devices those students were using,” says Stagg.

Stagg and his colleagues set up a server so
that students could log in, input their code and
automatically test it. But with 150 students try-
ing to connect at the same time, the homegrown
system ground to a halt. “Things were a little
shaky,” he recalls: “It was very, very slow.”

Frustrated, Stagg spent the Christmas
holidays devising a solution. R code runs in a
piece of software called an interpreter. Instead
of having students install the interpreter on

their own computers, or execute their code on
a remote server, he would have the interpreter
run in the students’ web browsers. To do that,
Stagg used a tool that is rapidly gaining popu-
larity in scientific computing: WebAssembly.

Code written in any of a few dozen languages,
including C, C++ or Rust, can be compiled into
the WebAssembly (or Wasm) instruction format,
allowing it to run in a software-based environ-
ment inside a browser. No external servers are
required. All modern browsers support WebAs-
sembly, so code that works on one computer
should produce the same result on any other.
Best of all, no installation is needed, so scientists
who are not authorized to install software — or
lack the know-how or desire to do so — can use it.

WebAssembly allows developers to recycle
their finely tuned code, so they don’t have to
rewrite it in the language of the web: JavaScript.
Google Earth, a 3D representation of Earth from

Google’s parent company, Alphabet, is built
on WebAssembly. So are the web version of
Adobe Photoshop and the design tool Figma.
Stagg, who is based in Newcastle but is now a
senior software engineer at Posit, a software
company in Boston, Massachusetts, solved his
exam server issues by porting the R interpreter
to WebAssembly in the webR package.

Daniel Ji, an undergraduate computer- science
student in Niema Moshiri’s laboratory at the Uni-
versity of California, San Diego, used WebAs-
sembly to build browser interfaces for many of
his group’s epidemiological resources, includ-
ing one that identifies evolutionary relation-
ships between viral genomes1. Moshiri has used
those tools to run analyses on smartphones,
game systems and low-powered Chromebook
laptops. “You might be able to have people run
these tools without even needing a standard
desktop or laptop computer,” Moshiri says.

HOW WEBASSEMBLY IS CHANGING
RESEARCH COMPUTING
Enabling code execution in the web browser, the multilanguage
tool is powerful but complicated. By Jeffrey M. Perkel

IL
LU

ST
R

A
T

IO
N

: T
H

E
P

R
O

JE
C

T
 T

W
IN

S

Nature | Vol 627 | 14 March 2024 | 455

Work / Technology & tools

“They could actually maybe run it on some
low-energy or portable device.”

That being said, porting an application to
 WebAssembly can be a complicated process
full of trial and error — and one that’s right for
only select applications.

Reusability and restrictions
Robert Aboukhalil’s journey with WebAssembly
began with an application that he created in
2017 for quality control of raw DNA-sequencing
data. The necessary algorithms already existed
in a tool called Seqtk, but they weren’t written in
JavaScript. So Aboukhalil, a software engineer
at the Chan Zuckerberg Initiative in Redwood
City, California, rewrote them — but his imple-
mentations were relatively slow. Retooling his
application to use WebAssembly improved per-
formance 20-fold. “It was awesome, because it
gave me more features that I didn’t have to write
myself. And it happened to make the whole web-
site a lot faster.”

C and C++ code can be ported to WebAssem-
bly using the free Emscripten compiler; Rust
programmers can use ‘wasm-pack’, an add-on
to Rust’s package-manager and compilation
utility, ‘cargo’. Python and R code cannot be
compiled into WebAssembly, but there are
WebAssembly ports of their interpreters called
Pyodide and webR, which can run scripting
code in these languages.

Quarto, a publishing system that allows
researchers to embed and execute R, Python
and Javascript code in documents and slide
decks, is compatible with WebAssembly, too,
using the quarto-webr extension (see our exam-
ple at go.nature.com/4c1ex). WebAssembly
can also be used in Observable computational
notebooks, which have uses in data science
and visualization and run JavaScript natively.
There’s even a version of Jupyter, another
 computational-notebook platform, called
 JupyterLite that is built on WebAssembly.

Aboukhalil has ported more than 30 com-
mon computational-biology utilities to
WebAssembly. His collection of ‘recipes’ — that
is, code changes — that allow the underlying
code to be compiled is available at biowasm.
com. “Compiling things to WebAssembly,
unfortunately, isn’t straightforward,”
Aboukhalil explains. “You often have to mod-
ify the original code to get around things that
WebAssembly doesn’t support.”

For instance, modern operating systems can
handle 64-bit memory addresses. WebAssem-
bly, however, is limited to 32 bits, and can access
only 232 bytes (4 gigabytes) of memory. Further-
more, it cannot directly access a computer’s file
system or its open network connections. And it’s
not multithreaded; many algorithms depend
on this form of parallelization, which allows dif-
ferent parts of a computation to be performed
simultaneously. “A lot of older code won’t com-
pile into WebAssembly, because it assumes that
it can do things that can’t be done,” Stagg says.

Compounding these challenges, scientific
software sits atop a tower of interconnected
libraries, all of which must be ported to
 WebAssembly for the code to run. Jeroen Ooms,
a software engineer in Utrecht, the Netherlands,
has ported roughly 85% of the R- universe pro-
ject’s 23,000 open-source R libraries to WebAs-
sembly. But only about half of those actually
work, he says, because some underlying librar-
ies have not yet been converted.

Then, there’s the process of web develop-
ment. Bioinformaticians don’t typically write
code in JavaScript, but it is needed to create the
web pages in which those tools will run. They
also have to manually handle tasks such as shut-
tling data between the two language systems
and freeing any memory they use – tasks that
are handled automatically in pure JavaScript.

As a result, WebAssembly is often used to
build relatively simple tools or applied to
computationally intensive pieces of larger web
applications. As a postdoc, bioinformatician
Luiz Irber, then at the University of California,
Davis, used WebAssembly to make a Rust lan-
guage tool called Branchwater broadly accessi-
ble. Branchwater converts sequence data into
numerical representations called hashes, which
are used to search databases of microbial DNA
sequences. Rather than having users install a
conversion tool or upload their data to remote
servers, Irber’s WebAssembly implementation
allows researchers to convert their files locally.

Bioinformatician Aaron Lun and soft-
ware engineer Jayaram Kancherla at Genen-
tech in South San Francisco, California,
used WebAssembly to implement kana, a
 browser-based analysis platform for single-cell
RNA-sequencing data sets. The goal, Lun and
Kancherla say, was to allow researchers to
explore their data without a bioinformatician’s
help. About 200 users now use kana each month.

The porting process took “six months,
maybe a year’s worth of weekends”, Lun says,
and was complicated by the fact that they were
starting from C++ libraries glued together with
R code. But that was nothing compared with
the challenge of crafting a smooth, friendly
user experience. “I can see why web developers
get paid so much,” he laughs.

Powering up
Developers who need more computing power
can supercharge their tools through a related
project, WebGPU, which provides access to
users’ graphics cards.

Will Usher, a scientific-visualization engineer
at the University of Utah in Salt Lake City, and

his team used WebGPU and WebAssembly to
implement a data-visualization algorithm called
‘Marching Cubes’, with which they manipulated
terabyte-scale data sets in a browser2. Computer
scientist Johanna Beyer’s team at Harvard Uni-
versity in Cambridge, Massachusetts, created
a visualization tool for gigabyte-sized whole-
slide microscopy data, using an algorithm called
‘Residency Octree’3. And developers at UK firm
Oxford Nanopore Technologies built Bonito, a
drag-and-drop basecalling tool that translates
raw signals into nucleotide sequences, for the
company’s sequencing platform.

Chris Seymour, Oxford Nanopore’s vice-
president of platform development, says the
company’s aim was to make its tools accessible
to scientists who lack the skills to install software
or are barred from doing so. Installation can be
“a barrier to entry for certain users”, he explains.
But WebAssembly is “a zero-install solution”:
“They just hit the URL, and they’re good to go.”

There are other benefits, too. Data do not have
to be transferred to external servers, alleviating
 privacy concerns. And because the browser iso-
lates the environment in which WebAssembly
code can be executed, it is unlikely to harm the
user’s system.

Perhaps most importantly, WebAssembly
allows researchers to explore software and data
with minimal friction, thus enabling develop-
ment of educational applications. Aboukhalil
has created a series of tutorials at sandbox.bio,
with which users can test-drive bioinformatics
tools in an in-browser text console. Statistician
Eric Nantz at pharmaceuticals company Eli Lilly
in Indianapolis, Indiana, is part of a pilot project
to use webR to share clinical-trial data with the
US Food and Drug Administration — a process
that would otherwise require each scientist
to install custom computational dashboards.
Using WebAssembly, he says, “will minimize,
from the reviewer’s perspective, many of the
steps that they had to take to get the applica-
tion running on their machines”.

WebAssembly, says Niema, “bridges that
gap that we have in bioinformatics, where bio
people are the users, computer-science people
are the developers, and how do we translate
[between them]?”

Still, brace yourself for complications.
“WebAssembly is a great technology, but it’s
also a niche technology,” Aboukhalil says.
“There’s a small subset of applications where it
makes sense to [use it], but when it does make
sense it can be very powerful. It’s just a matter
of figuring out which use cases those are.”

Jeffrey M. Perkel is technology editor at
Nature.

1. Ji, D. Aboukhalil, R. & Moshiri, N. et al. Bioinformatics 40,
btae018 (2024).

2. Usher, W. & Pascucci, V. Preprint at arXiv https://doi.
org/10.48550/arXiv.2009.03254 (2020).

3. Herzberger, L. et al. Preprint at arXiv https://doi.
org/10.48550/arXiv.2309.04393 (2023).

“WebAssembly is a zero-
install solution. They
just hit the URL, and
they’re good to go.”

Work / Technology & tools

456 | Nature | Vol 627 | 14 March 2024 | Corrected 14 March 2024

Correction
This Technology feature erroneously stated
that data are never transferred to an external
server with WebAssembly. In fact, they can
be; it is just not required. Also, it wrongly
stated that WebAssembly is limited to 32-bit
numbers. It can handle 64-bit numbers, but
is limited to 32-bit memory addresses.

Corrected 14 March 2024

