
In late 2021, midway through the COVID-19 
pandemic, George Stagg was preparing to 
give exams to his mathematics and statis-
tics students at the University of Newcastle, 
UK. Some would use laptops, others would 

opt for tablets or mobile phones. Not all of them 
could even use the programming language that 
was the subject of the test: the statistical lan-
guage R. “We had no control, really, over what 
devices those students were using,” says Stagg.

Stagg and his colleagues set up a server so 
that students could log in, input their code and 
automatically test it. But with 150 students try-
ing to connect at the same time, the homegrown 
system ground to a halt. “Things were a little 
shaky,” he recalls: “It was very, very slow.”

Frustrated, Stagg spent the Christmas 
holidays devising a solution. R code runs in a 
piece of software called an interpreter. Instead 
of having students install the interpreter on 

their own computers, or execute their code on 
a remote server, he would have the interpreter 
run in the students’ web browsers. To do that, 
Stagg used a tool that is rapidly gaining popu-
larity in scientific computing: WebAssembly.

Code written in any of a few dozen languages, 
including C, C++ or Rust, can be compiled into 
the WebAssembly (or Wasm) instruction format, 
allowing it to run in a software-based environ-
ment inside a browser. No external servers are 
required. All modern browsers support WebAs-
sembly, so code that works on one computer 
should produce the same result on any other. 
Best of all, no installation is needed, so scientists 
who are not authorized to install software — or 
lack the know-how or desire to do so — can use it.

WebAssembly allows developers to recycle 
their finely tuned code, so they don’t have to 
rewrite it in the language of the web: JavaScript. 
Google Earth, a 3D representation of Earth from 

Google’s parent company, Alphabet, is built 
on WebAssembly. So are the web version of 
Adobe Photoshop and the design tool Figma. 
Stagg, who is based in Newcastle but is now a 
senior software engineer at Posit, a software 
company in Boston, Massachusetts, solved his 
exam server issues by porting the R interpreter 
to WebAssembly in the webR package.

Daniel Ji, an undergraduate computer- science 
student in Niema Moshiri’s laboratory at the Uni-
versity of California, San Diego, used WebAs-
sembly to build browser interfaces for many of 
his group’s epidemiological resources, includ-
ing one that identifies evolutionary relation-
ships between viral genomes1. Moshiri has used 
those tools to run analyses on smartphones, 
game systems and low-powered Chromebook 
laptops. “You might be able to have people run 
these tools without even needing a standard 
desktop or laptop computer,” Moshiri says. 

HOW WEBASSEMBLY IS CHANGING 
RESEARCH COMPUTING
Enabling  code execution in the web browser, the multilanguage 
tool is powerful but complicated. By Jeffrey M. Perkel
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“They could actually maybe run it on some 
low-energy or portable device.”

That being said, porting an application to 
 WebAssembly can be a complicated process 
full of trial and error — and one that’s right for 
only select applications.

Reusability and restrictions
Robert Aboukhalil’s journey with WebAssembly 
began with an application that he created in 
2017 for quality control of raw DNA-sequencing 
data. The necessary algorithms already existed 
in a tool called Seqtk, but they weren’t written in 
JavaScript. So Aboukhalil, a software engineer 
at the Chan Zuckerberg Initiative in Redwood 
City, California, rewrote them — but his imple-
mentations were relatively slow. Retooling his 
application to use WebAssembly improved per-
formance 20-fold. “It was awesome, because it 
gave me more features that I didn’t have to write 
myself. And it happened to make the whole web-
site a lot faster.”

C and C++ code can be ported to WebAssem-
bly using the free Emscripten compiler; Rust 
programmers can use ‘wasm-pack’, an add-on 
to Rust’s package-manager and compilation 
utility, ‘cargo’. Python and R code cannot be 
compiled into WebAssembly, but there are 
WebAssembly ports of their interpreters called 
Pyodide and webR, which can run scripting 
code in these languages.

Quarto, a publishing system that allows 
researchers to embed and execute R, Python 
and Javascript code in documents and slide 
decks, is compatible with WebAssembly, too, 
using the quarto-webr extension (see our exam-
ple at go.nature.com/4c1ex). WebAssembly 
can also be used in Observable computational 
notebooks, which have uses in data science 
and visualization and run JavaScript natively. 
There’s even a version of Jupyter, another 
 computational-notebook platform, called 
 JupyterLite that is built on WebAssembly.

Aboukhalil has ported more than 30 com-
mon computational-biology utilities to 
WebAssembly. His collection of ‘recipes’ — that 
is, code changes — that allow the underlying 
code to be compiled is available at biowasm.
com. “Compiling things to  WebAssembly, 
unfortunately, isn’t straightforward,” 
Aboukhalil explains. “You often have to mod-
ify the original code to get around things that 
WebAssembly doesn’t support.”

For instance, modern operating systems can 
handle 64-bit memory addresses. WebAssem-
bly, however, is limited to 32 bits, and can access 
only 232 bytes (4 gigabytes) of memory. Further-
more, it cannot directly access a computer’s file 
system or its open network connections. And it’s 
not multithreaded; many algorithms depend 
on this form of parallelization, which allows dif-
ferent parts of a computation to be performed 
simultaneously. “A lot of older code won’t com-
pile into WebAssembly, because it assumes that 
it can do things that can’t be done,” Stagg says.

Compounding these challenges,  scientific 
software sits atop a tower of interconnected 
libraries, all of which must be ported to 
 WebAssembly for the code to run. Jeroen Ooms, 
a software engineer in Utrecht, the Netherlands, 
has ported roughly 85% of the R-  universe pro-
ject’s 23,000 open-source R libraries to WebAs-
sembly. But only about half of those actually 
work, he says, because some underlying librar-
ies have not yet been converted.

Then, there’s the process of web develop-
ment. Bioinformaticians don’t typically write 
code in JavaScript, but it is needed to create the 
web pages in which those tools will run. They 
also have to manually handle tasks such as shut-
tling data between the two language systems 
and freeing any memory they use – tasks that 
are handled automatically in pure JavaScript. 

As a result, WebAssembly is often used to 
build relatively simple tools or applied to 
computationally intensive pieces of larger web 
applications. As a postdoc, bioinformatician 
Luiz Irber, then at the University of California, 
Davis, used WebAssembly to make a Rust lan-
guage tool called Branchwater broadly accessi-
ble. Branchwater converts sequence data into 
numerical representations called hashes, which 
are used to search databases of microbial DNA 
sequences. Rather than having users install a 
conversion tool or upload their data to remote 
servers, Irber’s WebAssembly implementation 
allows researchers to convert their files locally.

Bioinformatician Aaron Lun and soft-
ware engineer Jayaram Kancherla at Genen-
tech in South San Francisco, California, 
used  WebAssembly to implement kana, a 
 browser-based analysis platform for single-cell 
RNA-sequencing data sets. The goal, Lun and 
Kancherla say, was to allow researchers to 
explore their data without a bioinformatician’s 
help. About 200 users now use kana each month.

The porting process took “six months, 
maybe a year’s worth of weekends”, Lun says, 
and was complicated by the fact that they were 
starting from C++ libraries glued together with 
R code. But that was nothing compared with 
the challenge of crafting a smooth, friendly 
user experience. “I can see why web developers 
get paid so much,” he laughs.

Powering up
Developers who need more computing power 
can supercharge their tools through a related 
project, WebGPU, which provides access to 
users’ graphics cards.

Will Usher, a scientific-visualization engineer 
at the University of Utah in Salt Lake City, and 

his team used WebGPU and WebAssembly to 
implement a data-visualization algorithm called 
‘Marching Cubes’, with which they manipulated 
terabyte-scale data sets in a browser2. Computer 
scientist Johanna Beyer’s team at Harvard Uni-
versity in Cambridge, Massachusetts, created 
a visualization tool for gigabyte-sized whole-
slide microscopy data, using an algorithm called 
‘Residency Octree’3. And developers at UK firm 
Oxford Nanopore Technologies built Bonito, a 
drag-and-drop basecalling tool that translates 
raw signals into nucleotide sequences, for the 
company’s sequencing platform.

Chris Seymour, Oxford Nanopore’s vice- 
president of platform development, says the 
company’s aim was to make its tools accessible 
to scientists who lack the skills to install software 
or are barred from doing so. Installation can be 
“a barrier to entry for certain users”, he explains. 
But WebAssembly is “a zero-install solution”: 
“They just hit the URL, and they’re good to go.”

There are other benefits, too. Data do not have 
to be transferred to external servers, alleviating 
 privacy concerns. And because the browser iso-
lates the environment in which  WebAssembly 
code can be executed, it is unlikely to harm the 
user’s system.

Perhaps most importantly, WebAssembly 
allows researchers to explore software and data 
with minimal friction, thus enabling develop-
ment of educational applications. Aboukhalil 
has created a series of tutorials at sandbox.bio, 
with which users can test-drive bioinformatics 
tools in an in-browser text console. Statistician 
Eric Nantz at pharmaceuticals company Eli Lilly 
in Indianapolis, Indiana, is part of a pilot project 
to use webR to share clinical-trial data with the 
US Food and Drug Administration — a process 
that would otherwise require each scientist 
to install custom computational dashboards. 
Using WebAssembly, he says, “will minimize, 
from the reviewer’s perspective, many of the 
steps that they had to take to get the applica-
tion running on their machines”.

WebAssembly, says Niema, “bridges that 
gap that we have in bioinformatics, where bio 
people are the users, computer-science people 
are the developers, and how do we translate 
[between them]?”

Still, brace yourself for complications. 
“WebAssembly is a great technology, but it’s 
also a niche technology,” Aboukhalil says. 
“There’s a small subset of applications where it 
makes sense to [use it], but when it does make 
sense it can be very powerful. It’s just a matter 
of figuring out which use cases those are.”

Jeffrey M. Perkel is technology editor at 
Nature.
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“WebAssembly is a zero-
install solution. They  
just hit the URL, and  
they’re good to go.”
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Correction
This Technology feature erroneously stated 
that data are never transferred to an external 
server with WebAssembly. In fact, they can 
be; it is just not required. Also, it wrongly 
stated that WebAssembly is limited to 32-bit 
numbers. It can handle 64-bit numbers, but 
is limited to 32-bit memory addresses. 

Corrected 14 March 2024


