
Any biology student can pick a neuron 
out of a photograph. Training a com-
puter to do the same thing is much 
harder. Jan Funke, a computational 
biologist at the Howard Hughes 

Medical Institute’s Janelia Research Campus 
in Ashburn, Virginia, recalls his first attempt 
14 years ago. “I was arrogant, and I was think-
ing, ‘it can’t be too hard to write an algorithm 
that does it for us’,” he says. “Boy, was I wrong.”

People learn early in life how to ‘segment’ 
visual information — distinguishing individual 
objects even when they happen to be crowded 
together or overlapping. But our brains have 
evolved to excel at this skill over millions of 
years, says Anna Kreshuk, a computer scientist 
at the European Molecular Biology Laboratory 

in Heidelberg, Germany; algorithms must 
learn it from first principles. “Mimicking 
human vision is very hard,” she says.

But in life-science research, it’s increasingly 
required. As the scale and complexity of bio-
logical imaging experiments has grown, so too 
has the need for computational tools that can 
segment cellular and subcellular features with 
minimal human intervention. This is a big ask. 
Biological objects can assume a dizzying array 
of shapes, and be imaged in myriad ways. As a 
result, says David Van Valen, a systems biolo-
gist at the California Institute of Technology 
in Pasadena, it can take much longer to ana-
lyse a data set than to collect it. Until quite 
recently, he says, his colleagues might collect 
a data set in one month, “and then spend the 

next six months fixing the mistakes of existing 
segmentation algorithms”.

The good news is that the tide is turning, 
particularly as computational biologists tap 
into the algorithmic architectures known as 
deep learning, unlocking capabilities that 
drastically accelerate the process. “I think 
segmentation overall will be solved within the 
foreseeable future,” Kreshuk says. But the field 
must also find ways to extend these methods 
to accommodate the unstoppable evolution 
of cutting-edge imaging techniques.

A learning experience
The early days of computer-assisted segmen-
tation required considerable hand-holding by 
biologists. For each experiment, researchers 

TEASING IMAGES  
APART, CELL BY CELL
Deep learning is powering the evolution of algorithms that can make sense of 
imagery from a range of microscopy techniques. By Michael Eisenstein

Cancer-cell nuclei (green boxes) picked out by software using deep learning.
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would have to carefully customize their 
algorithms so that they could identify the 
boundaries between cells in a particular 
specimen.

Image-analysis tools such as CellProfiler, 
developed by imaging scientist Anne Carpenter 
and computer scientist Thouis Jones at 
the Broad Institute of MIT and Harvard in 
Cambridge, Massachusetts, and ilastik, devel-
oped by Kreshuk and her colleagues, simplify 
this process with machine learning. Users edu-
cate their software by example, marking up 
demonstration images and creating precedents 
for the software to follow. “You just point on 
the images and say, this is what I want,” Kreshuk 
explains. That strategy is limited in its generaliz-
ability, however, because each training process 
is optimized for a particular experiment — for 
example, detecting mouse liver cells labelled 
with a specific fluorescent dye.

Deep learning produced a seismic shift in 
this regard. The term describes algorithms that 
use neural network architectures that loosely 
mimic the organization of the brain, and that 
can extrapolate sophisticated patterns after 
training with large volumes of information. 
Applied to image data, these algorithms can 
derive a more robust and consistent definition 
of the features that represent cells and other 
biological objects — not just in a given set of 
images but across multiple contexts.

A deep learning framework known as U-Net, 
developed in 2015 by Olaf Ronneberger, a com-
puter scientist at the University of Freiburg 
in Germany, and his colleagues, has proved 
particularly transformative. Indeed, it remains 
the underlying architecture behind most seg-
mentation tools almost a decade later.

Many initial efforts in this space focused 
on identifying cell nuclei. These are large 
and ovoid, with little variation in appearance 
across cell types, and virtually every mamma-
lian cell contains one. But they can still pose a 
challenge in cell-dense tissue samples, says 
Martin Weigert, a bioimaging specialist at 
the Swiss Federal Institute of Technology in 
Lausanne. “You can have very tightly packed 
nuclei. You don’t want a segmentation method 
to just say it’s a gigantic blob,” he says. In 2019, 
a team led by Peter Horvath, an imaging spe-
cialist at the Biological Research Centre in 
Szeged, Hungary, used U-Net to develop an 
algorithm called nucleAIzer. It performed 
better than hundreds of other tools that had 
competed in a ‘Data Science Bowl’ challenge 
for nuclear segmentation in light microscopy 
the year before1.

Even if software can find the nucleus, it 
remains tricky to extrapolate the shape of 
the rest of the cell. Other algorithms aim for a 
more holistic strategy. For example, StarDist, 
developed by Weigert and his collaborator 
Uwe Schmidt, generates star-shaped poly-
gons that can be used to segment nuclei while 
also extrapolating the more complex shape 

of the surrounding cytoplasm.
CellPose takes a more generalist approach. 

Developed by Marius Pachitariu, a com-
putational neuroscientist at Janelia, and 
co-principal investigator Carsen Stringer in 
2020, the software derives ‘flow fields’ that 
describe the intracellular diffusion of the 
molecular labels commonly used in light 
microscopy. “We came up with this representa-
tion of cells that’s basically described by these 
vector dynamics, with these flow fields kind 
of pushing all the pixels towards the cen-
tre of the cell,” says Pachitariu. This allows 
CellPose to confidently assign each pixel in 
a given image to one cell or another with high 
accuracy — and more importantly, with broad 
applicability across light microscopy methods 
and sample types.

“One of the magic things about CellPose 
was that … even with cells that are touching, 
it can split them apart just fine,” says Beth 
Cimini, a bioimaging specialist at the Broad 
who currently runs the CellProfiler project.

Basic training
These steady gains in deep-learning-based 
segmentation stem only partly from advances 
in algorithm design — most methods still riff on 
the same underlying U-Net foundation.

Instead, the key determinant of success is 
training. “Better data, better labels — that’s the 
secret,” says Van Valen, who led the develop-
ment of a popular segmentation tool, called 
DeepCell. Labelling entails assembling a 
collection of microscopy images, deline-
ating the nuclei and membranes and other 
structures of interest, and feeding those 
annotations into the software so that it can 
learn the features that define those elements. 
For CellPose, Pachitariu and Stringer spent 
half a year collecting and curating as many 
microscopy images as they could to build a 
large and broadly representative training data 
set — including non-cell images to provide 
clear counterexamples.

But building a vast, manually annotated 
training set can quickly become overwhelm-
ing, and deep-learning experts are developing 
strategies to work smarter rather than harder.

Diversity is one priority. “Having a few of a 
lot of different things is better than having very 
much of the same,” says Weigert. For exam-
ple, a collection of images of brain, muscle and 
liver tissue with a variety of staining and label-
ling approaches is more likely than are images 
of just one tissue type to produce results that 
generalize across experiments. Horvath also 
sees value in including imperfections — for 

example, out-of-focus images — that teach 
the algorithm to overcome such problems in 
real data.

Another increasingly popular strategy is to 
let algorithms do bulk annotation and then 
bring humans in to fact-check. Van Valen and 
his colleagues used this ‘human in the loop’ 
approach to develop the TissueNet image 
data set, which contains more than one mil-
lion annotated cell-nucleus pairs. They tasked 
a crowdsourced community of novices and 
experts with correcting predictions by a 
deep-learning model that was trained on just 
80 manually annotated images. Van Valen’s 
team subsequently developed a segmenta-
tion algorithm called Mesmer, and showed 
that this could match human segmentation 
performance after training it with TissueNet 
data2.Pachitariu and Stringer likewise used 
this human-in-the-loop approach to retrain 
CellPose to achieve better performance on 
specific data sets3, using as few as 100 cells. 
“On a new data set, we think a user can proba-
bly train their model in the loop within an hour 
or so,” Pachitariu says.

Even so, retraining for new tasks can be a 
chore. To streamline the process, Kreshuk 
and Florian Jug, a computational biologist 
at the Human Technopole Foundation in 
Milan, Italy, have created the BioImage Model 
Zoo, a community repository of pre-trained 
deep-learning models. Users can search it 
to find a ready-to-use model for segmenting 
images, rather than struggling to train their 
own. “We are trying to make the zoo really usa-
ble by biologists who are not very deep into 
deep learning,” says Kreshuk.

Indeed, the unfamiliarity of many wet-lab 
scientists with the intricacies of deep-learning 
algorithms is a broad roadblock to deploy-
ment, says Cimini. But there are many avenues 
to accessibility. For example, she attributes 
CellPose’s success to its straightforward graph-
ical user interface as well as its segmentation 
capabilities. “Putting the effort in to make stuff 
very friendly and approachable and non-scary 
is how you reach the majority of biologists,” 
she says. Many algorithms, including CellPose, 
StarDist and nucleAIzer, are also available as 
plug-ins for popular image-analysis tools 
including ImageJ/Fiji, napari (Nature 600, 
347–348; 2021) and CellProfiler.

Pushing the boundaries
Just a few years ago, Cimini says, she never 
imagined such rapid progress. “At least for 
nuclei — and probably even for cells, too — 
we’re actually getting to the point that within a 
few years, this is going to be a solved problem.”

Researchers are also making headway 
with more-challenging types of images. For 
example, many spatial transcriptomics stud-
ies entail multiple rounds of tissue labelling 
and imaging, in which each label or collec-
tion of labels reveals the RNA transcripts for 

“Annotating 3D data  
is such a pain — this is  
where people go to cry.”
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a specific gene. These are then reconstructed 
alongside images of the cells themselves to 
create tissue-wide gene-expression profiles 
with cellular resolution.

But identification and interpretation of 
gene-expression ‘spots’ is tough to automate. 
“When you actually open these raw images, 
you’ll see that there are just far too many spots 
for human beings to ever manually label,” 
says Van Valen. This, in turn, makes training 
difficult. Van Valen’s team has developed a 
deep-learning network that can confidently 
discern these spots with help from a classical 
computer-vision algorithm4. The research-
ers then integrated this network into a larger 
pipeline called Polaris, a generalizable solu-
tion that can be applied for end-to-end analysis 
of a wide range of spatial transcriptomics 
experiments.

By contrast, analysis of 3D volumes for light 
microscopy remains stubbornly difficult. 
Weigert says there is a profound shortage of 
publicly available 3D imaging data, and it is a 
chore to make such data useful for algorithmic 
training. “Annotating 3D data is such a pain — 
this is where people go to cry,” says Weigert. 
The variability in data quality and formats is 
also more extreme than for 2D microscopy, 
Pachitariu notes, necessitating larger and 
more-complicated training data sets.

There has, however, been remarkable 
progress in segmentation of 3D data generated 
by ‘volume electron microscopy’ methods. But 
interpreting electron micrographs throws up 
fresh challenges. “Whereas in light microscopy 
you have to learn what is signal and what is 
background, in electron microscopy you have 
to learn to distinguish what makes your signal 
different from all the other kinds of signal,” 
says Kreshuk. Volume electron microscopy 
heightens this challenge, requiring recon-
struction of a series of thin sample sections 
that document cells and their environments 
with remarkable detail and resolution.

These capabilities are particularly impor-
tant in connectomics studies that seek to 
generate neuronal ‘wiring maps’ of the brain. 
Here, the stakes are especially high in terms 
of accuracy. “If we make, on average, one mis-
take per micron of a neural fibre or per axon 
length, then the whole thing is useless,” says 
Funke. “This is one of the hardest problems 
you can have.” But the vast volumes of data 
also mean that algorithms need to be efficient 
to complete reconstruction in a reasonable 
time frame.

As with light microscopy, U-Net has deliv-
ered major dividends. In a preprint posted in 
June, the FlyWire Consortium — of which Funke 
is a member — described applying a U-Net-
based algorithm to reconstruct the wiring of 
an adult fly brain, comprising roughly 130,000 
neurons5. An assessment of 826 randomly cho-
sen neurons found that the algorithm achieves 
99.2% accuracy relative to human evaluators. 

Segmentation algorithms for connectomics 
are now largely mature, Funke says — although 
fact-checking these circuit diagrams at whole-
brain scale remains a daunting task. “The part 
that we’re nervous about now is, how do we 
proofread?”

A singular solution
Interoperability across imaging platforms 
also remains a challenge. An algorithm 
trained on samples labelled with the haema-
toxylin and eosin stains commonly used in 
histology might not perform well on confocal 
microscopy images, for example. Similarly, 
methods designed for segmentation in elec-
tron microscopy are generally incompatible 
with light microscopy data.

“For each technology, they capture biolog-
ical specimens at significantly varying scales 
and emphasize distinct features due to the dif-
ferent staining, different treatment protocols,” 
says Bo Wang, an artificial-intelligence special-
ist at the University of Toronto in Canada. “So, 
when you think about designing or training a 
deep-learning model that works across the full 
spectrum of these methods, that means really 
simultaneously excelling in different tasks.”

Wang is bullish about ‘foundation models’ 
that can truly generalize across imaging data 
formats, and helped to coordinate a data 
challenge at last year’s Conference on Neural 
Information Processing Systems (NeurIPS) for 
various groups to test their mettle in develop-
ing solutions.

In addition to bigger and broader train-
ing sets, such models will almost certainly 
require computational architectures beyond 
the comfortable confines of U-Net. Wang is 
enthusiastic about transformers — algorith-
mic tools that make it easier for deep learning 
to discern subtle but important patterns in 
data. Transformers are a central component 
of both the large language model ChatGPT 
and the protein-structure-predicting algo-
rithm AlphaFold, and the winning algorithm 
at the 2022 NeurIPS challenge leveraged 
transformers to achieve a decisive advantage 
over other approaches. “This helps the model 
focus on relevant cellular or tissue structures 
while ignoring some of the noise,” Wang says. 
Numerous groups are now developing foun-
dation models; this month, for example, Van 
Valen and his team posted a preprint describ-
ing their CellSAM algorithm6. Wang is optimis-
tic that first-generation solutions will emerge 
in the next few years.

In the meantime, many researchers are 
moving on to more-interesting applications 
of the tools they’ve developed. For example, 
Funke is using segmentation-derived insights 
to classify the functional characteristics of 
neurons based on their morphology — dis-
cerning features of inhibitory versus excita-
tory cells in connectomic maps, for instance. 
And Horvath’s team collaborated on a method 
called deep visual proteomics, which lever-
ages structural and functional insights from 
deep-learning algorithms to delineate spe-
cific cells in tissue samples that can then be 
precisely plucked out and subjected to deep 
transcriptomic and proteomic analysis7. This 
could offer a powerful tool for profiling the 
molecular pathology of cancers and identify-
ing appropriate avenues for treatment.

These prospects excite Kreshuk as well. “I 
hope in the near future we can make morphol-
ogy space really quantitative,” she says, “and 
analyse it together with the omics space and 
see how we can mix and match this stuff.”

Michael Eisenstein is a science writer in 
Philadelphia, Pennsylvania.
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Cells segmented by the CellPose software 
(top) and the ‘flow fields’ that it used to do 
the task (bottom).
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