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SUPPLEMENTARY INFORMATION 
The following information in sections of Study Area, Data, and Methods, together with the 
Figures S1 to S6 and Table S1, constitutes the hypothesis of the main article. Here we cite 
more references on which the original study relies. This supporting document should be 
acknowledged along with the original article if the methods are of particular interest.  

STUDY AREA 
African urban centre Freetown from Sierra Leone is our flag case study. Freetown-Layered-
Complex is the most common bedrock across Freetown Peninsula. The complex is a 
Mesozoic mafic intrusion as part of the early Jurassic African Craton 1,2. The city is a major 
Atlantic port and had a population of about 1.2 million in 2020. The population has doubled 
since 1992 from 563,000, and it will feasibly double again by 2050, exceeding 2 million 
people 3. The expanding city is progressively growing towards the landslide-prone hillslopes. 
Uncontrolled urban developments exacerbated the slope instability in recent years 4,5. The 
city has recently experienced a major landslide disaster that killed about 1000 people 6,7.  
The Caribbean Island Saint Lucia is our second case study. Deeply weathered and 
landslide-prone volcanic bedrocks and deep volcanic deposits compose the geology. 
Population in Saint Lucia is relatively steady; it was about 141,000 in 1992, and in 2020 
around 180,000, and it will likely remain constant until 2050. Landslides in Saint Lucia are 
mostly rainfall-induced 8, just as in Freetown. Deforestation and informal urbanisation 
expansion have been recognised as the most significant contributors to risk from losses 
despite the meagre rise in the population 9.  

DATA 
Disaster risk reduction (DRR) experts need to consider 'dynamic' interactions between 
changing rainfall patterns, slope stability mechanisms, and urbanisation practices that modify 
triggers, land cover, slope angles, and drainage over time 10. As a showcase, we adopted 
several globally available datasets to demonstrate that people living in informal settlements 
with poor building practices are more exposed to landslides. We further combined these data 
with mechanistic models to estimate the impact of informal building practice as a landslide 
cause, besides increasing extreme rainfall events due to climate change. 
Population: The base population we refer to is the 1990 urban population provided by the 
UN-DESA 11. However, the land cover products were delivered from 1992 onwards (further 
explained below). Hence, we link the 1990 population to the 1992 urban area in our 
analyses. Kii 3 projected the urban populations based on “Population of Urban 
Agglomerations with 300,000 Inhabitants or More in 2018” 11 following Shared 
Socioeconomic Pathways (SSPs). The projections by Kii 3 also rely on version 4 (v4) of the 
Gridded Population of the World 12,13. We used the population estimates based on the fourth 
scenario (SSP4) that assumes unequal, stratified economies with rapid (moderate) 
urbanisation in medium- and low-income (high-income) countries. SSP4 realistically 
assumes the urban population to increase mainly in high-fertility countries, reflecting the past 
emergence of urban centres in sub-Saharan Africa with 1–5 million residents. Those urban 
centres either host considerable informal settlements already, or informal settlements are 
likely to develop in their perimeter. More optimistic SSP1 and SSP5 project homogenous 
urbanisation in countries with different economic growth, while SSP2 and SSP3 assume 
intermediate economic growth with slow urbanisation.  
Population projections by Kii 3 bring along uncertainties arising from the variations in future 
social, political, and environmental conditions related to the underlying SSPs 14. Hence, the 
study assessed the projection uncertainties by estimating the absolute percentage errors 
(APEs) of the projections by comparing them to the urban population provided by the UN-



DESA 11, which is available only until 2035. The reported error logically increases with time 
from 10% for 10-year to 16% for 25-year projections. 
The example emphasizing the population living on steep terrain in Caracas and Taiz is 
based on the work of the Pesaresi et al. 15. 
DEM: Digital elevation model (DEM) of the NASA Shuttle Radar Topographic Mission 
(SRTM) forms the basis for our topographic analyses. Version 4.1 (v4.1) of the SRTM data 
covers over 80% of the globe in 90-metre resolution at the equator (3-arc seconds) 16. This 
data is accessible via the USGS FTP server. We interpolated all the spatial data in our 
analyses using the nearest-neighbour interpolation to the DEM resolution for consistency. 
DEM derivatives, such as hillslope angle, are computed in metric units referring to the 
Universal Transverse Mercator (UTM) coordinates in their respective UTM zone using 
TopoToolbox 17. We used this 90-metre resolution data in our global analyses. We referred 
to the 30-metre (1-arc second) version (SRTM-v3.0) of the same data in our mechanistic 
model—CHASM+ (Extended Combined Hydrology and Stability Model). 
Land cover: We relied on the European Space Agency (ESA) global land cover 
classification (The Multi-Resolution Land Characteristics, MRLC v2.0.7) to assess the 
changes in the urban area. Annual MRLC maps come in 300-metre spatial resolution from 
1992 onwards. Each pixel value corresponds to the label of a land cover class defined based 
on the UN Land Cover Classification System (LCCS) 18. If the urban class items such as 
buildings are sparsely distributed in a pixel, MRLC tends not to classify them as urban 19. 
Hence, the final MRLC products underestimate urbanised peri-urban space. Even if all the 
cities we have used as examples host large and dense informal neighbourhoods, we might 
still miss sparsely urbanised areas. This potential bias would likely lessen the representation 
of informal communities on steeper hillslopes, undermining the severity of the highlighted 
problem—urban population at risk—in this study. 
Informal settlements: Informal settlements are those neighbourhoods with limited physical 
and socioeconomic access to the opportunities of their respective cities 20. Using this feature 
of physical inaccessibility, Soman et al. 21 classified the neighbourhoods based on the 
number of building parcels, namely k-complexity, from the least accessible building in a 
street block to the nearest external street. Hence, informal neighbourhoods are classified not 
as binary units but measured on a gradient. The higher the number of building parcels, the 
more inaccessible the neighbourhood is. The OpenStreetMap (OSM) data is the basis of the 
building footprints and road networks 22. The OSM mission covered more than 95% of all 
roads in about 42% of countries with an ∼83% completeness globally 23. Although OSM 
coverage varies between developed and developing countries, with heterogeneous urban 
and rural areas e.g., 24, high-density urban areas are covered considerably better 25. 
Considering the variety in the completeness of OSM data 21, we used only those cities with 
high coverage as case studies e.g., 22. For Freetown (Sierra Leone), we used an upgraded 
version of the original data provided by Mansueto Institute analysis of OpenStreetMap 26.  
Landslides data: Our motivation regarding the fatal landslides hinge on Froude and Petley’s 
27 data. The original data covers the period from 2004 to 2018, with recent updates in AGU 
Landslide Blog by Dave Petley e.g., 28. The Global Fatal Landslide Database (GFLD) relies on 
English daily and systematic metadata search tools, such as news reports in mass media. 
We excluded landslides with natural triggers, such as earthquakes and rainfall, showing only 
the anthropogenic landslides (Figure S1).  

The example about the landslide counts in (de)forested informal settlements in Rio de 
Janeiro, Brazil in the manuscript rely on the work of Smyth and Royle 29. 

Input factors for CHASM+: CHASM+ (Extended Combined Hydrology and Stability Model) 
30,31 requires information on two-dimensional slope cross-section geometry (e.g., hillslope 
angle, elevation, and depth of the strata), soil properties (geotechnical and hydrological), 



boundary conditions (e.g., initial water table) and urban properties (cut slope angle, 
presence/absence of roof gutters, leaking pipes and septic tanks).  

 

Figure S1. Global fatal 
landslides without natural 
triggers between 2004 and 
2017, such as earthquakes 
and rainfall 27. Especially 
those landslides induced by 
mining, hillcutting, and 
construction are on the rise.

For Freetown (the case study reported in the main manuscript), we obtained the input data 
and the associated probability distributions via literature and expert elicitation via 
collaboration with the engineering consultancy Arup 32–36. For Saint Lucia (the case study 
reported in this supplementary information), primary inputs related to soil strength properties 
are shear tests of local soils 37,38 and similar volcanic tropical residual soils 39. Soil and urban 
properties information were collated through community-based mapping and local experts 8. 
The parameters of the probability distributions of these properties were extrapolated from 
this data as well as from the literature and they are reported in Bozzolan et al. 31. However, 
here, we modified the variability range of the hillslope angle (between 10° and 35°) and 
included the vegetated hillslopes simulation. For both case studies analysed, the simulated 
synthetic natural hillslopes refer to fully vegetated hillslopes with shallow and deep roots 
(shrub and forest). CHASM+ represents vegetation via rainfall interception, 
evapotranspiration, root water uptake, vegetation surcharge, and increased permeability and 
soil cohesion due to the root network. We considered the vegetation properties invariant in 
the stochastic sampling e.g., 40—i.e., not accounting for their spatial variability and 
modifications due to climate change. 
We represent informal housing by uncontrolled hill cutting, house loads, and lack of surface 
urban water management. These urban construction activities are described in CHASM+ by 
appropriately modifying the hillslopes’ geometrical profile and by introducing roof gutters on 
houses, leaking superficial pipes, and buried septic tanks. Bozzolan et al. 31 report their 
variability ranges. Simulations also include variations in the housing density (from 1 to 100% 
of the hills urbanised). 
Hourly rainfall intensity and duration are the dynamic forcing parameters in the CHASM+ 
model. We refer to intensity-duration-frequency (IDF) relationships derived from the design 
of the Roseau Dam in Saint Lucia 41. We derived a minimum and maximum rainfall intensity 
and duration (with the maximum respectively 200 mm/h and 72h). Almeida et al. 42 
suggested sampling from these ranges independently and uniformly (no a-priori-knowledge). 
Hence, we randomly generated a wide range of rainfall intensity-duration combinations to 
capture observed and likely future rainstorms. Given that no rainfall records were available 
for Freetown, we used the same variability ranges from Saint Lucia.   

METHODS 
Method 1 – Urban population & area: We calculated the annual urban population growth 
rate based on SSP4 data for every two latitudes (e.g., 0–2, 2–4) along the entire longitudinal 



[-180 180] range to show the population growth rate on the latitudinal scale in Figure 1A 
(Original figure is shown here as Figure S2). Each city in a two-latitudinal interval has a 
different annual growth rate. Hence, we calculated the mean for each interval (points in 
Figure 1A) and included the Gaussian smoothed continuous mean as a line. The shaded 
area around the line continuously shows the growth rate variation. Using the MRLC data, we 
computed the spatial urban expansion rate for the same region (2 latitudes along the entire 
longitudinal range) in Figure 1B. We divided the classified metropolitan area in 2020 with the 
same in 1992 to highlight that the urban area has grown 2.38 times since 1992. We 
estimated the required new urban space to host the increasing population between 2020 and 
2050, assuming simplistically concentric growth of the urban areas spatially controlled only 
by the topography. Method 3 further explains the computation details of the approach. The 
urban area in 2050 will be 3.18 times the area in 1992. Assuming a homogenous population 
distribution in the urban space, we could also anticipate the population in different hillslope 
ranges (Table 1). 

Table S1. The population of tropical cities (>300K) in millions. We assume a homogeneously 
distributed population in classified urban areas. 

Hillslope range 0°--10° 10°--20° 20°--30° 30°--90° 

Population in 1990 401,9 7,3 1 0,2 

Population in 2020 2755,7 55,1 7,6 1,8 

Population in 2050 3727,8 80 11,1 2,5 

Alternative urban expansion projections exist based on the SLEUTH urban growth model 
43,44. Underlying population estimates for these projections are approximately 1 km spatial 
resolution LandScan global population data by Oak Ridge National Laboratory 
https://landscan.ornl.gov/landscan-datasets). LandScan underestimates the population living 
in informal settlements 45–47. In Addition, the earliest dated grid data is from 2010, which is 
relatively young compared to those based on MRLC. Considering the above-listed gaps, we 
have not referred to these projections of the SLEUTH model. Nevertheless, we show the 
urban hillslope distributions for 2050 normalised by the distribution of 2020 based on the 
SLEUTH model (Figure S2), which could be compared to Figure 1C. 
Method 2 – Urban hillslope distribution in Tropics: A landslide is a downslope 
gravitational mass movement of earth materials. Hence the hillslope angle is the primary 
cause of landslides and is commonly attributed as the most critical covariate in susceptibility 
and hazard models 48. To mimic the landslide-prone urban space, we controlled the urban 
slope distribution in tropical cities with a minimum of 300,000 inhabitants in 2018. We 
computed the density of urban areas along hillslopes [0° 35°] (bandwidth = 2) in the entire 
tropics. Dividing the urban slope distribution in 2020 with the one in 1992 helped highlight 
the elevated population expansion on landslide-prone steeper hillslopes (10°–35°) 49,50, when 
compared to the milder urban slopes (<10°) in Figure 1C. Below we also show the 
transitional change of urban hillslope distributions from 1992 to 2020 based on MRLC data 
(Figure S3). Besides our flag example of Freetown, we offer two hilly inland towns, Bukavu 
(DR Congo) in Africa and Medellin (Colombia) in South America. We choose Medellin and 
Bukavu as examples, while both these inland cities host rapidly expanding informal 
settlements with high landslide risk e.g., 51,52. The urban expansion towards steeper hillslopes 
is faster in Freetown, while the transition is more gradual in Bukavu and Medellin (Figure 
S3). Starting in the mid-2000s, Internal displacement following Sierra Leone’s Civil War 
enhanced the development of informal settlements around the rugged perimeter of Freetown 
53,54, steepening the urban hillslope distribution (Figure S2B’). 



 
Figure S2: Extended version of the Figure 1 in the main manuscript. (A) includes also the projection of 
annual urban population growth rate in 2050. (B) Box plots highlight the variety of the scattered data 
of global urban growth as ratios of 2020 and 1992 in 4 equal latitudinal intervals between 46°N and 
46°S. (C) The projected urban hillslope distributions of the SLEUTH model for 2050, which is 
normalized by the distribution of 2020 43,44. 

 
 

Figure S3. Urban hillslope 
angle distribution of (A, A’) 
Bukavu (DR Congo) and (B, 
B’) Freetown (Sierra Leone) in 
Africa, and (C, C’) Medellin 
(Colombia) in South America 
over the last 29 years [1992–
2020]. (A), (B), and (C) depict 
the actual hillslope distribution 
of the indexed year. (A’), (B’), 
and (C’) show the hillslope 
distributions normalised by 
the distribution of 1992. The 
higher values of normalised 
density highlight those 
hillslope intervals where the 
urban expansion was more 
prominent. 

Method 3 – Urban hillslope projection in Tropics: To project the slope distribution in 
2050, we assumed homogeneous population density to simplify the computation. First, we 
estimated the required metropolitan area to accommodate the new population towards 2050 
using the population (i.e., 1990) and urban area differences between 1992 and 2020, as 
mentioned previously in Method 1. This difference leads to assessing the required space in 
2050, assuming no change in construction style (e.g., an increasing percentage of high-rise 
buildings). Then, we calculated the immediate nonurban area (grid cells, 300m×300m) 
encircling the urban area in 2020 to narrow the problem to which of the available grid cells 
will be occupied by the newly urbanised area. Instead of randomly selecting a sample from 
these available grid cells, we weighted them based on a suitability index (mean line in Figure 
S4) following the past land occupation behaviour. The tendency to settle on hillslopes 
decreases considerably should there be enough suitable gentle terrain (Figure S4). Based 



on the mean behaviour over the last 28 years [1993–2020], we weighted our random 
sampling of the available terrain encircling the urban centres in 2020 to urbanise towards 
2050. We sampled the required area to host the new population in 2050 from available grid 
cells 1000 times to estimate the uncertainty of our assumption (Figure 1C). As seen in the 
grey shaded area of the normalised density for 2050 in Figure 1C, the projection is 
consistent with respect to the 2020 situation. Densities in Figure 1C and wherever else used 
throughout the manuscript takes bandwidth as 2 to achieve comparable results. 

 

Figure S4. Slope distribution of newly 
urbanised areas compared to the available 
adjacent space encircling the urban centres the 
year before over the last 28 years [1992–2020]. 
The shaded area highlights the 5th–95th 
percentile confidence. 

Method 4 – Hillslope distribution of informal neighbourhoods: We selected four 
emerging tropical towns distributed in 3 continents—Antipolo (Philippines) and Baguio 
(Philippines) in Asia, Port au Prince (Haiti) in the Caribbean, and Freetown (Sierra Leone) 
and Bukavu (DR Congo) in Africa—to show hillslope angles across different districts. 
Spanning through the entire tropical realm, rapidly evolving informal settlements of these 
case cities also have a high landslide risk  27,55. We consistently distributed the integer 
values of k-complexity up to 9 in 4 subcategories while dividing the communities regardless 
of their spatial coverage of the total urban area. The k-complexity equal to or above 9 
depicts the least accessible areas, the 5th subcategory. We categorised the k-complexity of 
10–14 as the least accessible area to achieve a more homogenous subdivision of the total 
area in the case of Freetown (Figure 2A). The spatial coverage of each subcategory varies 
the least in Baguio (18%–24%) and the most in Antipolo (4%–43%). The distribution of 
hillslope angles shifts rightwards towards steeper hillslopes in more inaccessible (likely 
informal) parts of each city. Hence, more vulnerable people are exposed to landslides, 
potentially increasing the impact of future disasters 56. They often also raise landslide hazard 
with unregulated deforestation, illegal slope cutting and terracing, and a lack of drainage 57.  
Method 5 – Set up of the mechanistic model CHASM+: We quantified the role of informal 
housing in slope stability under different climate conditions by using the 2D mechanistic 
CHASM+ (Extended Combined Hydrology and Stability Model) 30,31. CHASM+ temporally 
analyses slope stability under changes of slope hydrology. It relies on Bishop's circular limit 
equilibrium method 58, using rainfall intensity and duration as the dynamic slope destabilising 
force. In our case examples of Freetown (Sierra Leone) and Saint Lucia (Caribbean), the 
model inputs are the parameters defining the lithology, morphology, urban characteristics, 
and rainfall-forcing data (described in the previous section). We represent these parameters' 
variation and uncertainty across the two cities using their probability distributions. These 
distributions were assessed based on information available online, on literature and on the 
data collected from the field (also critically including previous studies within informal 
communities which provided information on soil strata depths, cut slope angles, and other 
types of urban construction practices). By sampling the model input in a Monte Carlo 
framework following their probability distributions, we obtained a library of about 120,000 
simulations per case study, each one representing a feasible hillslope in the area (i.e., where 
for feasible we mean statistically possible, given that the hillslopes parameters are chosen 
as values of their probability distributions). We finally assessed the stability of these 



hillslopes with CHASM+, obtaining a corresponding number of slope stability responses (i.e., 
the minimum factor of safety). Bozzolan et al. 31 provide more details on the model run in a 
stochastic framework. 

 

 
Figure S5. Hillslope angles 
across different districts. (A) 
Antipolo in the Philippines and 
(B) Port au Prince in Haiti 
have less informally 
urbanised areas with clearly 
different hillslope angle 
distributions. The distributions 
of (C) Baguio in the 
Philippines and (D) Bukavu in 
the DR Congo gradually shift 
rightwards with increasing 
informality. Slums are more 
likely to exist on hillslopes 
greater than 10°, increasing 
landslide exposure. The 
legend shows the number of 
building parcels a person has 
to cross to get to the nearest 
external street as a proxy of 
the quality of urbanisation: the 
higher the number, the more 
informal the neighbourhood. 
We provide the spatial 
coverage of each category in 
the urban area in brackets. 

Once this library of slope stability response was available, we calculated the IDF curves 
associated with 100 years return period events based on the global data provided by Courty 
et al. 59. We accounted for climate change impact by modifying these IDFs for the scenarios 
RCP8.5, as described by Martel et al. 60. To generate Figure 2B in the main article (for 
Freetown) and Figure S6 below (for Saint Lucia), we selected the CHASM+ simulations 
associated with rainfall-durations combinations similar to these calculated IDFs. 

 

Figure S6. The likelihood of slope failure (FS < 
1) along different hillslope angles considering 
the influence of informal housing and climate 
change (CC) for Saint Lucia in the Caribbean. 
The 10th–90th percentile range highlights the 
confidence band of our simulations. Marginal 
distributions along the vertical axes show the 
safety factors per category, which represents 
how the simulated slope stability responses 
(i.e., the dots in the background) distribute 
along the y-axis for the “Natural”, “Urbanised”, 
and “Urbanised with Climate Change” cases. 

In both case studies, urbanisation is the main reason for decreasing slope stability e.g., 29,61. 
Although the Factor of safety (FS) remains largely above one even when we consider 
urbanisation, there is a significant decrease in the overall slope stability in Saint Lucia 



(Figure S6). Another important aspect is that while the frequency of urban landslides 
increases, their dimensions (radius) decrease compared to natural hillslopes (see Figure S7 
for Freetown and Figure 9 in Bozzolan et al. 31 for Saint Lucia). Therefore, the findings reflect 
the empirical evidence in low-income communities reporting a high frequency of small-scale 
landslides, particularly associated with cut slopes, for high intensity and short-duration 
events—“everyday extensive risks” 62,63. 

 

 
Figure S7. Landslide size 
distribution for natural and 
informally urbanised areas in 
Freetown. The shaded area 
covers 95% of simulated 
landslides in the respective 
category (i.e., urbanised or 
natural). Marginal distributions 
along both the axes show 
landslide rupture size and 
rainfall intensity, representing 
how the simulated slope 
stability response (i.e., dots in 
the background) distribute 
along the x- and y-axis for the 
'Natural' and 'Urbanised' 
cases. The shaded area and 
the marginal distributions 
along the x-y axis highlight 
that the landslides get smaller 
and more frequent (+20%) in 
the informally urbanised 
landscape when compared to 
natural hillslopes. 

These results account for the uncertainty in future urban development and climate change 
projections as well as in the inherent uncertainty in the hillslopes' soil properties and 
geotechnical characteristics. Identifying a trend in slope stability (e.g., a decrease in FS 
when informal urbanisation is present) over the variation and uncertainty of all these model’s 
input factors, make the presented results robust. Nevertheless, here we show 'proof of 
concept' modelling results. Our simulations indicate likely trends and the value of the 
modelling approach; the outputs should not form the basis for policy in their current state. 
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