
A s a graduate student, Steven Weisberg
helped to develop a university
campus — albeit, a virtual one. Called
Virtual Silcton, the software tests
spatial navigation skills, teaching

people the layout of a virtual campus and then
challenging them to point in the direction of
specific landmarks1. It has been used by more
than a dozen laboratories, says Weisberg,
who is now a cognitive neuroscientist at the
University of Florida in Gainesville.

But in February 2020, a colleague who was
testing the software identified a problem: it
couldn’t compute your direction accurately if
you were pointing more than 90 degrees from
the site. “The first thing I thought was, ‘oh,

that’s weird’,” Weisberg recalls. But it was true:
his software was generating errors that could
alter its calculations and conclusions.

“We have to retract everything,” he thought.
When it comes to software, bugs are inev-

itable — especially in academia, where code
tends to be written by graduate students and
postdocs who were never trained in software
development. But simple strategies can min-
imize the likelihood of a bug, and ease the
process of recovering from them.

Avoidance
Julia Strand, a psychologist at Carleton
College in Northfield, Minnesota, investi-
gates strategies to help people to engage in

conversation in, for example, a noisy, crowded
restaurant. In 2018, she reported that a visual
cue, such as a blinking dot on a computer
screen that coincided with speech, reduced
the cognitive effort required to understand
what was being said2. That suggested that
a simple smartphone app could reduce the
mental fatigue that sometimes arises in such
situations.

But it wasn’t true. Strand had inadvertently
programmed the testing software to start
timing one condition earlier than the other,
which, as she wrote in 2020, “is akin to start-
ing a stopwatch before a runner gets to the
line”.

“I felt physically ill,” she wrote — the mistake

HOW TO FIX YOUR SCIENTIFIC
CODING ERRORS
Software bugs are frustrating. Adopting some simple strategies can help you
to avoid them, and fix them when they occur. By Jeffrey M. Perkel

IL
LU

ST
R

A
T

IO
N

 B
Y

 T
H

E
P

R
O

JE
C

T
 T

W
IN

S

172 | Nature | Vol 602 | 3 February 2022

Work / Technology & tools

©

2022

Springer

Nature

Limited.

All

rights

reserved. ©

2022

Springer

Nature

Limited.

All

rights

reserved.

could have negatively affected her students,
her collaborators, her funding and her job.
It didn’t — she corrected her article, kept her
grants and received tenure. But to help others
avoid a similar experience, she has created a
teaching resource called Error Tight3.

Error Tight provides practical tips that echo
computational reproducibility checklists,
such as; use version control; document code
and workflows; and adopt standardized file
naming and organizational strategies.

Its other recommendations are more
philosophical. An ‘error tight’ laboratory,
Strand says, recognizes that even careful
researchers make mistakes. As a result, her
team adopted a strategy that is common in
professional software development: code
review. The team proactively looks for bugs
by having two people review their work, rather
than assuming those bugs don’t exist.

Joana Grave, a psychology PhD student
at the University of Aveiro, Portugal, also
uses code review. In 2021, Grave retracted
a study when she discovered that the tests
she had programmed had been miscoded to
show the wrong images. Now, experienced
programmers on the team double-check her
work, she says, and Grave repeats coding tasks
to ensure she gets the same answer.

Scientific software can be difficult to
review, warns C. Titus Brown, a bioinforma-
tician at the University of California, Davis.
“If we’re operating at the ragged edge of
novelty, there may only be one person that
understands the code, and it may take a lot
of time for another person to understand it.
And even then, they may not be asking the
right questions.”

Weisberg shared other helpful practices in
a Twitter thread about his experience. These
include sharing code, data and computational
environments on sites such as GitHub and
Binder; ensuring computational results dove-
tail with evidence collected using different
methods; and adopting widely used software
libraries in lieu of custom algorithms when
possible, as these are often extensively tested
by the scientific community.

Whatever the origin of your code, validate
it before using it — and then again period-
ically, for instance after upgrading your
operating system, advises Philip Williams, a
natural-products chemist at the University
of Hawaii at Manoa in Honolulu. “If anything
changes, the best practice is to go back and
just make sure everything’s OK, rather than
just assume that these black boxes will always
turn out the correct answer,” he says.

Williams and his colleagues identified what
they called a ‘glitch’ in another researcher’s
published code for interpreting nuclear
magnetic resonance data4, which resulted in
data sets being sorted differently depend-
ing on the user’s operating system. Checking
their numbers against a model data set

with known ‘correct’ answers, could have
alerted them that the code wasn’t working
as expected, he says.

Recovery
If code cannot be bug-free, it can at least be
developed so that any bugs are relatively easy to
find. Lorena Barba, a mechanical and aerospace
engineer at George Washington University in
Washington DC, says that when she and her
then graduate student Natalia Clementi dis-
covered a mistake in code underlying a study5
they had published in 2019, “there were some
poop emojis being sent by Slack and all sorts
of scream emojis and things for a few hours”.
But the pair were able to quickly resolve their
problem, thanks to the reproducibility pack-
ages (known as repro-packs) that Barba’s lab
makes for all their published work.

A repro-pack is an open-access archive of
all the scripts, data sets and configuration
files required to perform an analysis and
reproduce the results published in a paper,
which Barba’s team uploads to open-access
repositories such as Zenodo and Figshare.
Once they realized that their code contained
an error — they had accidentally omitted a
mathematical term in one of their equations
— Clementi retrieved the relevant repro-pack,
fixed the code, reran her computations and
compared the results. Without a repro-pack,
she would have had to remember exactly
how those data were processed. “It proba-
bly would have taken me months to try to
see if this [code] was correct or not,” she says.
Instead, it took just two days.

Brown needed significantly more time to
resolve a bug he discovered in 2020 when
attempting to apply his lab’s metagenome-
search tool, called spacegraphcats, towards
a new question. The software contained
a bad filtering step, which removed some
data from consideration. “I started to think,
‘oh dear, this maybe calls into question the
original publication’,” he deadpans. Brown
fixed the software in less than two weeks. But
re-running the computations set the project
back by several months.

To minimize delays, good documentation
is crucial. Milan Curcic, an oceanographer at
the University of Miami, Florida, co-authored
a 2020 study6 that investigated the impact
of hurricane wind speed on ocean waves. As
part of that work, Curcic and his colleagues
repeated calculations that had been conducted
in the same lab in 2004, only to discover that
the original code was using the wrong data file

to perform some of its calculations, producing
an “offset” of about 30%.

According to Google Scholar, the 2004
study7 has been cited more than 800 times,
and its predictions inform hurricane forecasts
today, Curcic says. Yet its code, written in the
programming language MATLAB, was never
placed online. And it was so poorly docu-
mented that Curcic had to work through it line
by line to understand how it worked. When he
found the error, he says, “The question was, am
I not understanding this correctly, or is this
indeed incorrect?”

Strand has team members read each others’
code to familiarize them with programming
and encourage good documentation. “Code
should be clearly commented enough that
even someone who doesn’t know how to code
can understand what’s happening and how the
data are changing at each step,” she says.

And she encourages students to view errors
as part of science rather than personal failings.
“Labs that have a culture of ‘people who are
smart and careful don’t make mistakes’, are
setting themselves up for being a lab that
doesn’t admit their mistakes,” she says.

Bugs don’t necessarily mean retraction in
any event. Barba, Brown and Weisberg’s errors
had only minor impacts on their results, and
none required changes to their publications.
In 2016, Marcos Gallego Llorente, then a
genetics graduate student at the University of
Cambridge, UK, identified an error in the code
he wrote to study human migratory patterns in
Africa 4,500 years ago. When he reanalysed the
data, the overall conclusion was unchanged,
although the extent of its geographic impact
was, and a correction sufficed.

Thomas Hoye, an organic chemist at the
University of Minnesota at Minneapolis,
co-authored a study that used the software
in which Williams discovered a bug. When
Williams contacted him, Hoye says, he didn’t
have “any particular strong reaction”. He and
his colleagues fixed their code, updated their
online protocols, and moved on.

“I couldn’t help but at the end think, ‘this is
the way science should work’,” he says. “You
find a mistake, you go back, you improve, you
correct, you advance.”

Jeffrey M. Perkel is Technology Editor for
Nature.

1. Weisberg, S. M., Schinazi, V. R., Newcombe, N. S.,
Shipley, T. F. & Epstein, R. A. J. Exp. Psychol. Learn.
Mem. Cogn. 40, 669–682 (2014).

2. Strand, J. F., Brown, V. A. & Barbour, D. L. Psychon. Bull.
Rev. 26, 291–297 (2019).

3. Strand, J. F. Preprint at PsyArXiv https://doi.org/10.31234/
osf.io/rsn5y (2021).

4. Neupane, J. B. et al. Org. Lett. 21, 8449–8453 (2019).
5. Clementi, N. C., Cooper, C. D. & Barba, L. A. Phys. Rev. E

100, 063305 (2019).
6. Curcic, M. & Haus, B. K. Geophys. Res. Lett. 47,

e2020GL087647 (2020).
7. Donelan, M. A. et al. Geophys. Res. Lett. 31, L18306

(2004).

“I started to think, ‘oh
dear, this maybe calls
into question the original
publication’.”

Nature | Vol 602 | 3 February 2022 | 173

©

2022

Springer

Nature

Limited.

All

rights

reserved. ©

2022

Springer

Nature

Limited.

All

rights

reserved.

