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SUMMARY: 54 
 55 
The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in 56 
the spike (S) protein, 15 of which are in the receptor-binding domain (RBD), thereby raising 57 
concerns about the effectiveness of available vaccines and antibody therapeutics. Here, we 58 
show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the 59 
Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions of plasma neutralizing 60 
activity were observed against Omicron compared to the ancestral pseudovirus for 61 
convalescent and vaccinated individuals, but this loss was less pronounced after a third 62 
vaccine dose. Most receptor-binding motif (RBM)-directed monoclonal antibodies (mAbs) 63 
lost in vitro neutralizing activity against Omicron, with only 3 out of 29 mAbs retaining 64 
unaltered potency, including the ACE2-mimicking S2K146 mAb1. Furthermore, a fraction 65 
of broadly neutralizing sarbecovirus mAbs neutralized Omicron through recognition of 66 
antigenic sites outside the RBM, including sotrovimab2, S2X2593 and S2H974. The 67 
magnitude of Omicron-mediated immune evasion marks a major SARS-CoV-2 antigenic 68 
shift. Broadly neutralizing mAbs recognizing RBD epitopes conserved among SARS-CoV-2 69 
variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and 70 
future zoonotic spillovers.  71 
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INTRODUCTION 72 
 73 

The evolution of RNA viruses can result in immune escape and modulation of binding to 74 

host receptors through accumulation of mutations5. Previously emerged SARS-CoV-2 variants of 75 

concern (VOC) have developed resistance to neutralizing antibodies, including some clinical 76 

antibodies used as therapeutics6-8. The B.1.351 (Beta) VOC is endowed with the greatest 77 

magnitude of immune evasion from serum neutralizing antibodies6,7, whereas B.1.617.2 (Delta) 78 

quickly outcompeted all other circulating isolates through acquisition of mutations that enhanced 79 

transmission and pathogenicity9-11 and eroded the neutralizing activity of antibody responses9. 80 

The Omicron (B.1.1.529) variant was first detected in November 2021, immediately 81 

declared by the WHO as a VOC and quickly rose in frequency worldwide. The Omicron variant 82 

is substantially mutated compared to any previously described SARS-CoV-2 isolates, including 83 

37 S residue substitutions in the predominant haplotype (Fig. 1a and Extended Data Fig. 1-4). 84 

Fifteen of the Omicron mutations are clustered in the RBD, which is the main target of neutralizing 85 

antibodies after infection or vaccination12,13, suggesting that Omicron might escape infection- and 86 

vaccine-elicited Abs and therapeutic mAbs. Nine of these mutations map to the receptor-binding 87 

motif (RBM) which is the RBD subdomain directly interacting with the host receptor, ACE214. 88 

Preliminary reports indicated that the neutralizing activity of plasma from Pfizer-89 

BioNTech BNT162b2 vaccinated individuals is reduced against SARS-CoV-2 Omicron15,16, 90 

documenting a substantial, albeit not complete, escape from mRNA vaccine-elicited neutralizing 91 

antibodies. Another report also shows that vaccine effectiveness against symptomatic disease induced 92 

by the Omicron variant is significantly lower than for the Delta variant17. The potential for booster 93 

doses to ameliorate this decline in neutralization is being explored.  In addition, the neutralizing 94 

activity of several therapeutic mAbs appears decreased or abolished against SARS-CoV-2 95 

Omicron16,18. 96 

To understand the consequences of the unprecedented number of mutations found in 97 

Omicron S, we employed a pseudovirus assay to study receptor usage and neutralization mediated 98 

by monoclonal and polyclonal antibodies as well as surface plasmon resonance to measure binding 99 

of the RBD to human and mouse ACE2 receptors. 100 

 101 

 102 

 103 
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RESULTS 104 
 105 

The Omicron RBD binds with increased affinity to human ACE2 and gains binding to mouse 106 

ACE2  107 

Twenty-three out of the 37 Omicron S amino acid mutations have been individually 108 

observed previously in SARS-CoV-2 variants of interest (VOI), VOC, or other sarbecoviruses, 109 

whereas the remaining 14 substitutions have not been described before (Extended Data Fig. 5a). 110 

Analysis of the GISAID database indicates that there are rarely more than 10-15 Omicron S 111 

mutations present in a given non-Omicron haplotype or Pango lineage (Extended Data Fig. 5b-112 

d). While we have not formally assessed the possibility of recombination events, persistent 113 

replication in immunocompromised individuals or inter-species ping-pong transmission5 are 114 

possible scenarios for the rapid accumulation of mutations that could have been selected based on 115 

viral fitness and immune evasion. 116 

Several of the Omicron RBD mutations are found at positions that are key contact sites 117 

with human ACE2, such as K417N, Q493K and G496S19. Except for N501Y, which increases 118 

ACE2 binding affinity by 6-fold20,21, all other substitutions were shown by deep mutational 119 

scanning (DMS) to either reduce binding or to have no impact on human ACE2 affinity when 120 

present individually22, resulting in an overall predicted decrease of binding affinity 121 

(Supplementary Table 1). However, we found that the Omicron RBD has a 2.4-fold increased 122 

binding affinity to human ACE2 (Fig. 1b, c and Extended Data Figure 6a), suggesting epistasis 123 

of the full constellation of RBD mutations. It remains to be determined whether and how the S 124 

mutations in Omicron may influence the dynamics of RBD opening, which may also impact RBD 125 

engagement with ACE2. 126 

The presence of the N501Y mutation has previously been described to enable some SARS-127 

CoV-2 VOC to infect mice23.  Since Omicron carries the N501Y mutation, along with 14 other 128 

RBD mutations, we investigated whether the Omicron RBD binds mouse ACE2 using surface 129 

plasmon resonance (SPR) (Fig. 1b and Extended Data Fig. 6). The Omicron RBD binds mouse 130 

ACE2 with a 1:1 binding affinity of 470 nM (Fig. 1b), whereas weak binding of the Beta RBD 131 

and very weak binding of the Alpha RBD to mouse ACE2 was observed (Fig. 1b and Extended 132 

Data Fig. 6b), consistent with previous reports23,24. Conversely, our assay did not detect any 133 

binding of the Wuhan-Hu-1, Delta, or K417N RBDs to mouse ACE2. The enhanced binding of 134 
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the Omicron RBD to mouse ACE2 is likely explained by the Q493R substitution which is similar 135 

to the Q493K mutation isolated upon mouse-adaptation of SARS-CoV-219. Our binding data 136 

correlate with our observation of Omicron S-mediated but not Wuhan-Hu-1/G614 S-mediated 137 

entry of VSV pseudoviruses into mouse ACE2-expressing cells (Fig 1d), as recently reported25. 138 

Collectively, these findings highlight the plasticity of the SARS-CoV-2 RBM, which in the case 139 

of the Omicron VOC acquired enhanced binding to human and mouse ACE2 orthologues, relative 140 

to other SARS-CoV-2 isolates. The influence of these findings on viral load and replication 141 

kinetics in humans and animal models remains to be evaluated due to the interplay of additional 142 

factors besides receptor binding. Preliminary data, suggest that Omicron appears attenuated in 143 

some laboratory mouse strains (M.S.D, personal communication) and that replicates less 144 

efficiently in human lung tissue as compared to Delta26. 145 

 146 

Extent of Omicron escape from polyclonal plasma neutralizing antibodies 147 

To investigate the magnitude of immune evasion mediated by the 37 mutations present in 148 

Omicron S, we used Wuhan-Hu-1 S and Omicron S VSV pseudoviruses and compared plasma 149 

neutralizing activity in different cohorts of convalescent patients or individuals vaccinated with 150 

six major COVID-19 vaccines (mRNA-1273, BNT162b2, AZD1222, Ad26.COV2.S, Sputnik V 151 

and BBIBP-CorV) (Fig. 2, Supplementary Fig. 1-3 and Extended Data Table 1). 152 

Convalescent patients and individuals vaccinated with Ad26.COV2.S (single dose), 153 

Sputnik V or BBIBP-CorV had no detectable neutralizing activity against Omicron except for one 154 

Ad26.COV2.S  and three BBIBP-CorV vaccine recipients (Fig. 2a). Individuals immunized with 155 

mRNA-1273, BNT162b2, and AZD1222 had more potent neutralizing activity against Wuhan-156 

Hu-1 and retained detectable neutralization against Omicron with a decrease of 39-, 37- and 21-157 

fold, respectively (Fig. 2a). The dampening of neutralizing activity against Omicron was 158 

comparable to that observed against SARS-CoV, a virus that differs from Wuhan-Hu-1 by 52 159 

residues in the RBD. Reductions of neutralization potency were less pronounced in vaccinated 160 

individuals who had been previously infected (5-fold) (Fig. 2b) and in dialysis patients (4-fold, 161 

Fig. 2c) who were boosted with a third mRNA vaccine dose. In the same cohort of dialysis patients, 162 

antibodies neutralizing the vaccine-matched Wuhan-Hu-1 strain were found to be low (less than 163 

1/100) or undetectable in 44% of patients after the second mRNA vaccine dose27.  164 
ACCELE

RATED A
RTIC

LE
 P

REVIE
W



   
 

Collectively, these findings demonstrate a substantial and unprecedented reduction in 165 

plasma neutralizing activity against Omicron as compared to the ancestral virus, which in several 166 

cases likely falls below the protective threshold28. Our data further indicate that multiple exposures 167 

to the ancestral virus through infection or vaccination results in the production of antibodies that 168 

can neutralize divergent viruses, such as Omicron or even SARS-CoV, as a consequence of affinity 169 

maturation or epitope masking by immune-dominant RBM antibodies28-30. 170 

 171 

Broadly neutralizing sarbecovirus antibodies inhibit SARS-CoV-2 Omicron 172 

Neutralizing mAbs with demonstrated in vivo efficacy in prevention or treatment of SARS-173 

CoV-231-37 can be divided into two groups based on whether they do or do not block S binding to 174 

ACE2. Of the eight currently authorized or approved mAbs, seven (LY-CoV555, LY-CoV016, 175 

REGN10933, REGN10933, COV2-2130, COV2-2196 and CT-P59; all synthesized based on 176 

publicly available sequences) block binding of S to ACE2 and are often used as two-mAb 177 

cocktails8. They bind to epitopes overlapping with the RBM (Fig. 3a) which is structurally and 178 

evolutionary plastic38, as illustrated by the accumulation of mutations throughout the pandemic 179 

and the genetic diversity of this subdomain among ACE2-utilizing sarbecoviruses39. Combining 180 

two such ACE2 blocking mAbs can provide greater resistance to variant viruses that carry RBM 181 

mutations31.  The second class of mAbs, represented by sotrovimab, do not block ACE2 binding 182 

but neutralize SARS-CoV-2 by targeting non-RBM epitopes shared across many sarbecoviruses, 183 

including SARS-CoV4,40. 184 

We compared the in vitro neutralizing activity of these therapeutic mAbs side-by-side 185 

against Wuhan-Hu-1 S and Omicron S using VSV pseudoviruses (Fig. 3). Although sotrovimab 186 

had 3-fold reduced potency against Omicron and Omicron-R346K variant VSV pseudoviruses, all 187 

other (RBM-specific) mAbs completely lost their neutralizing activity, with the exception of the 188 

combination of COV2-2130 and COV2-2196 for which we determined a ~100-fold reduced 189 

potency (Fig. 3b-c). Moreover, sotrovimab exhibited a less than 2-fold reduction in neutralizing 190 

activity against authentic Omicron SARS-CoV-2 as compared to the WA1/2020 D614G virus (Fig. 191 

3c and Extended Data Fig. 7), consistent with recent reports on S309, the parent of 192 

sotrovimab41,42. The 3-fold and less than 2-fold decrease in the neutralizing activity of sotrovimab 193 

against pseudoviruses and authentic virus, respectively, is within the currently defined threshold 194 

of “no change” as defined by FDA (FDA fact sheet for sotrovimab denotes no change: <5-fold 195 

ACCELE
RATED A

RTIC
LE

 P
REVIE

W



   
 

reduction in susceptibility43). Overall, our findings agree with two preliminary reports16,18 and, 196 

together with serological data, support that the Omicron VOC has undergone antigenic shift.   197 

We next tested a larger panel of 36 neutralizing NTD- or RBD-specific mAbs for which 198 

the epitopes have been characterized structurally or assigned to a given antigenic site through 199 

competition studies3,4,9,12,44,45 (Fig. 4a, Extended Data Table 2 and Extended Data Fig. 8). The 200 

four NTD-specific antibodies completely lost activity against Omicron, consistent with the 201 

presence of mutations and deletions in the NTD antigenic supersite21,46. Three out of the 22 mAbs 202 

targeting the RBD antigenic site I (RBM) retained potent neutralizing activity against Omicron, 203 

including S2K146, which binds the RBD of SARS-CoV-2, SARS-CoV and other sarbecoviruses 204 

through ACE2 molecular mimicry1. Of the nine mAbs specific for the conserved RBD site II4, 205 

only S2X2593 retained activity against Omicron, whereas neutralization was decreased by more 206 

than 10-fold or abolished for the remaining mAbs. Finally, the S2H97 mAb retained neutralizing 207 

activity against Omicron through recognition of the highly conserved cryptic site V4.  The panel 208 

of 44 mAbs tested in this study includes members of each of the four classes of neutralizing mAbs, 209 

defined by their cognate RBD binding sites (site I, II, IV and V)12. Our findings show that 210 

member(s) of each of the four classes can retain Omicron neutralization: S2K146, S2X324 and 211 

S2N28 targeting site I, S2X259 targeting site II, sotrovimab targeting site IV, and S2H97 targeting 212 

site V (Fig. 4b). Several of these mAbs cross-react with and neutralize sarbecoviruses beyond the 213 

SARS-CoV-2 clade 1b1,3,4, indicating that targeting of conserved epitopes can lead to 214 

neutralization breadth and resilience to antigenic shift associated with viral evolution. 215 

 216 

Discussion 217 

The remarkable number of substitutions present in Omicron S marks a dramatic shift in 218 

antigenicity and is associated with immune evasion of unprecedented magnitude for SARS-CoV-219 

2. While antigenic shift of the influenza virus is defined as genetic reassortment of the RNA 220 

genome segments, the mechanism for the abrupt appearance of a large number of mutations in 221 

SARS-CoV-2 Omicron S remains to be determined. Although recombination events are a hallmark 222 

of coronaviruses47, we and others48 propose that the Omicron shift may result from extensive viral 223 

replication in immunodeficient hosts47,49, although we cannot rule out the possibility of a 224 

contribution of inter-species ping-pong transmission5 between humans and rodents, as previously 225 

described for minks50. 226 
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 Consistent with the variable decrease in plasma neutralizing antibody titers, we found that 227 

only six out of a panel of 44 neutralizing mAbs retained potent neutralizing activity against 228 

Omicron. The mAbs retaining neutralization recognize RBD antigenic sites that are conserved in 229 

Omicron and other sarbecoviruses. Notably, three of these mAbs bind to the RBM, including one 230 

which is a molecular mimic of the ACE2 receptor (S2K146)1. Collectively, these data may guide 231 

future efforts to develop SARS-CoV-2 vaccines and therapies to counteract antigenic shift and 232 

future sarbecovirus zoonotic spillovers.  233 
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FIGURE LEGENDS.  284 
 285 
Fig. 1. Omicron RBD shows increased binding to human ACE2 and gains binding to murine ACE2. 286 
a, Omicron mutations are shown in a primary structure of SARS-CoV-2 S with domains and cleavage sites 287 
highlighted. b, Single-cycle kinetics SPR analysis of ACE2 binding to six RBD variants. ACE2 is injected 288 
successively at 11, 33, 100, and 300 nM (human) or 33, 100, 300, and 900 nM (mouse). Black curves show 289 
fits to a 1:1 binding model. White and gray stripes indicate association and dissociation phases, 290 
respectively. c, Quantification of human ACE2 binding data. Reporting average ± standard deviation of 291 
three replicates. Asterisks indicate that Delta was measured in a separate experiment with a different chip 292 
surface and capture tag; Delta fold-change is calculated relative to affinity of Wuhan-Hu-1 measured in 293 
parallel (91 ± 1.6 nM).  d, Entry of Wu-Hu-1, Alpha, Beta, Delta, Gamma, Kappa and Omicron VSV 294 
pseudoviruses into mouse ACE2 expressing HEK293T cells. Shown are 2 biological replicates (technical 295 
triplicates). Lines, geometric mean.  296 
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Fig. 2. Neutralization of Omicron SARS-CoV-2 VSV pseudovirus by plasma from COVID-19 298 
convalescent and vaccinated individuals. Plasma neutralizing activity in COVID-19 convalescent or 299 
vaccinated individuals (mRNA-1273, BNT162b2, AZD1222, Ad26.COV2.S (single dose), Sputnik V and 300 
BBIBP-CorV). a, Pairwise neutralizing antibody titers (ID50) against Wuhan-Hu-1 (D614G), Beta, and 301 
Omicron VOC, and SARS-CoV. Vero E6-TMPRSS2 used as target cells. Data are geometric mean of n = 302 
3 biologically independent experiments. b, Pairwise neutralizing antibody titers of plasma (ID50) against 303 
Wuhan-Hu-1 and Omicron VOC. Data are geometric mean of n = 2 biologically independent experiments. 304 
c, Plasma neutralizing activity in dialysis patients who received 3 doses of either BNT162b2 or mRNA-305 
1273 mRNA vaccines. Pairwise neutralizing antibody titers of plasma (ID50) against Wuhan-Hu-1 and 306 
Omicron. One representative experiment out of two is shown. Vero E6 used as target cells in b and c. Line, 307 
geometric mean of 1/ID50 titers. Shown is the percentage of samples that lost detectable neutralization 308 
against Omicron or SARS-CoV. Shown cumulative titer loss not accounting samples with 1/ID50 below 309 
the limit of detection. HCW, healthcare workers; Wu, Wuhan-Hu-1; o, Omicron VOC, b, Beta VOC. 310 
Enrolled donors' demographics provided in Extended Data Table 1. Statistical significance is set as P<0.05 311 
and P-values are indicated with asterisks (*=0.033; **=0.002; ***<0.001), using a paired two-sided t test 312 
(Wilcoxon rank test).  313 
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Fig. 3.  Neutralization of Omicron SARS-CoV-2 VSV pseudovirus by clinical-stage mAbs. a, RBD 315 
sequence of SARS-CoV-2 Wuhan-Hu-1 with highlighted footprints of ACE2 (light blue) and mAbs 316 
(colored according to the RBD antigenic site recognized). Omicron RBD is also shown, and amino acid 317 
substitutions are boxed. b, Neutralization of SARS-CoV-2 VSV pseudoviruses displaying Wuhan-Hu-1 318 
(white) or Omicron (colored as in Fig. 4b) S proteins by clinical-stage mAbs. Data are representative of 319 
one independent experiment out of two. Shown is the mean of 2 technical replicates. c, Geometric mean 320 
IC50 values for Omicron (colored as in Fig. 4b) and Wuhan-Hu-1 (white) (top panel), and geometric mean 321 
fold change (bottom panel). Vero E6 used as target cells. Shown in blue (right) is neutralization of authentic 322 
virus by sotrovimab (WA1/2020 versus hCoV-19/USA/WI-WSLH-221686/2021). Non-neutralizing IC50 323 
titers and fold change were set to 104 and 103, respectively. Orange dots for sotrovimab indicate 324 
neutralization of Omicron VSV pseudovirus carrying R346K. Data are representative of n = 2 biologically 325 
independent experiments for most mAbs, for sotrovimab against Omicron VSV n=6 and for Omicron 326 
authentic virus n=3.  327 
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Fig. 4. Neutralization of Omicron SARS-CoV-2 VSV pseudovirus by monoclonal antibodies. a, Mean 329 
IC50 values for Omicron (colored as in b) and Wuhan-Hu-1 (white) (top panel), and mean fold change 330 
(bottom panel) for 4 NTD mAbs and 32 RBD mAbs. Non-neutralizing IC50 titers and fold change were set 331 
to 104 and 103, respectively. Triangles for S2K146 and S2X259 indicate neutralization of Omicron carrying 332 
R346K. Vero E6 used as target cells. Data are representative of n = 2 biologically independent experiments 333 
(except for S2K146 and S2X259 where n = 6). b, The RBD sites targeted by 4 mAbs cross-neutralizing 334 
Omicron are annotated and representative antibodies (the Fv region) bound to S are shown as a composite. 335 
Colored surfaces on the RBD depict the epitopes and the RBM is shown as a black outline. 336 
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Extended Data Fig. 1. Schematic of mutations landscape in SARS-CoV-2 VOC, VOI and VUM 338 
(Variant Under Monitoring). D, deletion: ins, insertion.  339 
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Extended Data Fig. 2
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Extended Data Fig. 2. Amino acid substitutions and their prevalence in the Omicron RBD. a, SARS-341 
CoV-2 S in fully open conformation (PDB: 7K4N) with positions of mutated residues in Omicron 342 
highlighted on one protomer in green or red spheres in or outside the ACE2 footprint (ACE2), respectively. 343 
RBM is defined by a 6 Å cutoff in the RBD-ACE2 interface38. Not all Omicron mutations are shown. b, 344 
Substitutions and their prevalence in Omicron sequences reported in GISAID as of December 20, 2021 345 
(ambiguous amino acid substitutions are indicated with strikethrough cells). Shown are also the 346 
substitutions found in other variants. K417N mutation in Delta is found only in a fraction of sequences.  347 
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Extended Data Fig. 3
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Extended Data Fig. 3. Amino acid substitutions and their prevalence in the Omicron NTD. Sequences 349 
reported in GIAID as of December 20, 2021; (ambiguous amino acid substitutions are marked with 350 
strikethrough cells). Shown are also the substitutions found in other variants.  351 
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Extended Data Fig. 4
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Extended Data Fig. 4. Amino acid substitutions and their prevalence in the Omicron S2. Sequences 353 
reported in GIAID as of December 20, 2021; (ambiguous amino acid substitutions are marked with 354 
strikethrough cells). Shown are also the substitutions found in other variants.  355 
  356 

ACCELE
RATED A

RTIC
LE

 P
REVIE

W



Extended Data Fig. 5
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Extended Data Fig. 5. Characteristics of emergent mutations of Omicron. a, Shared mutations of 357 
micron with other sarbecovirus and with VOC. b, Since the beginning of the pandemic there is a progressive 358 
coalescence of Omicron-defining mutations into non-Omicron haplotypes that may carry as many as 10 of 359 
the Omicron-defining mutations. c, Pango lineages (dots) rarely carry more than 10-15 lineage-defining 360 
mutations. d, Exceptionally, some non-Omicron haplotypes may carry up to a maximum 19 Omicron-361 
defining mutations. Shown are selected exceptional haplotypes. Spike G142D and Y145del may also be 362 
noted as G142del and Y145D. 363 
  364 

ACCELE
RATED A

RTIC
LE

 P
REVIE

W



Extended Data Fig. 6
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Extended Data Fig. 6. SPR analysis of human and mouse ACE2. a, Full fit results for one representative 365 
replicate from each quantifiable SPR dataset with a monomeric analyte (1:1 binding model). b, Single-366 
cycle kinetics SPR analysis of dimeric mouse ACE2 binding to six RBD variants. Dimeric ACE2 is injected 367 
successively at 33, 100, 300, and 900 nM. White and gray stripes indicate association and dissociation 368 
phases, respectively. The asterisk indicates where high concentrations of dimeric mouse ACE2 is non-369 
specifically binding to the sensor chip surface (Delta experiment was performed separately from the other 370 
RBD variants, with a different capture tag and chip surface). 371 
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Extended Data Fig. 7
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Extended Data Fig. 7. Neutralization of SARS-CoV-2 Omicron strain by sotrovimab in Vero-373 
TMPRSS2 cells. a-f, Neutralization curves in Vero-TMPRSS2 cells comparing the sensitivity of SARS-374 
CoV-2 strains with sotrovimab with WA1/2020 D614G and hCoV-19/USA/WI-WSLH-221686/2021 (an 375 
infectious clinical isolate of Omicron from a symptomatic individual in the United States). Shown are three 376 
independent experiments performed in technical duplicate is shown.  377 
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Extended Data Fig. 8
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Extended Data Fig. 8. Neutralization of WT (D614) and Omicron SARS-CoV-2 Spike pseudotyped 379 
virus by a panel of 36 mAbs. a-c, Neutralization of SARS-CoV-2 VSV pseudoviruses carrying wild-type 380 
D614 (grey) or Omicron (orange) S protein by NTD-targeting (a) and RBD-targeting (b-c) mAbs (b, site 381 
I; c, sites II and V). Data are representative of one independent experiment out of two. Shown is the mean. 382 
of 2 technical replicates. 383 
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Extended Data Table 1. Enrolled donors' demographics. Table shows the characteristics of 385 
the individuals in the analyzed cohorts, including gender, age range and type of vaccine received.   386 
  387 
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Extended Data Table 2. Properties of tested mAbs. Tables shows details of the full set of 388 
mAbs characterized for their neutralizing activity in Fig. 3 and 4, including specificity, V gene 389 
usage for the heavy chain, original source, IC50 values, accession codes of available structures 390 
and relevant references.  391 
  392 
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MATERIALS AND METHODS 393 
 394 
Cell lines 395 
Cell lines used in this study were obtained from ATCC (HEK293T and Vero E6), ThermoFisher Scientific 396 
(Expi CHO cells, FreeStyle™ 293-F cells and Expi293F™ cells), Lenti-X 293T cells (Takara) or generated 397 
in-house (Vero E6/TMPRSS2)40. Vero-TMPRSS251 cells were cultured at 37°C in Dulbecco’s Modified 398 
Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 10 mM HEPES pH 7.3, and 399 
100 U/ml of penicillin–streptomycin and supplemented with 5 µg/mL of blasticidin. None of the cell lines 400 
used was authenticated. Cell lines were routinely tested for mycoplasma contamination.  401 
Omicron prevalence analysis 402 
The viral sequences and the corresponding metadata were obtained from GISAID EpiCoV project 403 
(https://www.gisaid.org/). Analysis was performed on sequences submitted to GISAID up to Dec 09, 2021. 404 
S protein sequences were either obtained directly from the protein dump provided by GISAID or, for the 405 
latest submitted sequences that were not incorporated yet in the protein dump at the day of data retrieval, 406 
from the genomic sequences with the exonerate52 2 2.4.0–haf93ef1_3 407 
(https://quay.io/repository/biocontainers/exonerate?tab=tags ) using protein to DNA alignment with 408 
parameters -m protein2dna –refine full –minintron 999999 –percent 20 and using accession 409 
YP_009724390.1 as a reference. Multiple sequence alignment of all human spike proteins was performed 410 
with mafft53 7.475–h516909a_0 (https://quay.io/repository/biocontainers/mafft?tab=tags) with parameters 411 
–auto –reorder – keeplength –addfragments using the same reference as above. S sequences that contained 412 
>10% ambiguous amino acid or that were < than 80% of the canonical protein length were discarded. 413 
Figures were generated with R 4.0.2 (https://cran.r-project.org/) using ggplot2 3.3.2 and sf 0.9-7 packages. 414 
To identify each mutation prevalence, missingness (or ambiguous amino acids) was taken into account in 415 
both nominator and denominator. 416 
 417 
Monoclonal Antibodies 418 
Sotrovimab and VIR-7832 (VIR-783254 is derived from sotrovimab, Fc further engineered to carry 419 
GAALIE) were produced at WuXi Biologics (China). Antibody VH and VL sequences for mAbs COV2-420 
2130 (PDB ID 7L7E), COV2-2196 (PDB ID 7L7E, 7L7D), REGN10933 (PDB ID 6XDG), REGN10987 421 
(PDB ID 6XDG) and ADI-58125 (PCT application WO2021207597, seq. IDs 22301 and 22311) were 422 
subcloned into heavy chain (human IgG1) and the corresponding light chain (human IgKappa, IgLambda) 423 
expression vectors respectively and produced in transiently transfected Expi-CHO-S cells (Thermo Fisher, 424 
#A29133) at 37°C and 8% CO2. Cells were transfected using ExpiFectamine. Transfected cells were 425 
supplemented 1 day after transfection with ExpiCHO Feed and ExpiFectamine CHO Enhancer. Cell culture 426 
supernatant was collected eight days after transfection and filtered through a 0.2 µm filter. Recombinant 427 
antibodies were affinity purified on an ÄKTA Xpress FPLC device using 5 mL HiTrap™ MabSelect™ 428 
PrismA columns followed by buffer exchange to Histidine buffer (20 mM Histidine, 8% sucrose, pH 6) 429 
using HiPrep 26/10 desalting columns. Antibody VH and VL sequences for LY-CoV555, LY-CoV016, and 430 
CT-P59 were obtained from PDB IDs 7KMG, 7C01 and 7CM4, respectively and mAbs were produced as 431 
recombinant IgG1 by ATUM. The remaining mAbs were discovered at VIR and have been produced as 432 
recombinant IgG1 in Expi-CHO-S cells as described above. The identity of the produced mAbs was 433 
confirmed by LC-MS analysis.  434 
 435 
IgG mass quantification by LC/MS intact protein mass analysis 436 
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Fc N-linked glycan from mAbs were removed by PNGase F after overnight non-denaturing reaction at 437 
room temperature. Deglycosylated protein (4 µg) was injected to the LC-MS system to acquire intact MS 438 
signal. Thermo MS (Q Exactive Plus Orbitrap) was used to acquire intact protein mass under denaturing 439 
condition with m/z window from 1,000 to 6,000. BioPharma Finder 3.2 software was used to deconvolute 440 
the raw m/z data to protein average mass. The theoretical mass for each mAb was calculated with GPMAW 441 
10.10 software. Post-translational modifications such as N-terminal pyroglutamate cyclization, C-terminal 442 
lysine cleavage, and formation of 16-18 disulfide bonds were added into the calculation.   443 
 444 
Sample donors 445 
Samples were obtained from SARS-CoV-2 recovered and vaccinated individuals under study protocols 446 
approved by the local Institutional Review Boards (Canton Ticino Ethics Committee, Switzerland, 447 
Comitato Etico Milano Area 1). All donors provided written informed consent for the use of blood and 448 
blood derivatives (such as PBMCs, sera or plasma) for research. Samples were collected 14-28 days after 449 
symptoms onset and 14-28 days or 7-10 months after vaccination. Convalescent plasma, Ad26.COV2.S, 450 
mRNA-1273 and BNT162b2 samples were obtained from the HAARVI study approved by the University 451 
of Washington Human Subjects Division Institutional Review Board (STUDY00000959). AZD1222 452 
samples were obtained from INGM, Ospedale Maggio Policlinico of Milan and approved by the local 453 
review board Study Polimmune. Sputnik V samples were obtained from healthcare workers at the hospital 454 
de Clínicas “José de San Martín”, Buenos Aires, Argentina. Sinopharm vaccinated individuals were 455 
enrolled from Aga Khan University under IRB of UWARN study. 456 
 457 
Serum/plasma and mAbs pseudovirus neutralization assays 458 
VSV pseudovirus generation used on Vero E6 cells  459 
The plasmid encoding the Omicron SARS-CoV-2 S variant was generated by overlap PCR mutagenesis of 460 
the wild-type plasmid, pcDNA3.1(+)-spike-D1955. Replication defective VSV pseudovirus expressing 461 
SARS-CoV-2 spike proteins corresponding to the ancestral Wuhan-Hu-1 virus and the Omicron VOC were 462 
generated as previously described46 with some modifications. Lenti-X 293T cells (Takara) were seeded in 463 
15-cm2 dishes at a density of 10e6 cells per dish and the following day transfected with 25 µg of spike 464 
expression plasmid with TransIT-Lenti (Mirus, 6600) according to the manufacturer’s instructions. One 465 
day post-transfection, cells were infected with VSV-luc (VSV-G) with an MOI 3 for 1 h, rinsed three times 466 
with PBS containing Ca2+/Mg2+, then incubated for additional 24 h in complete media at 37°C. The cell 467 
supernatant was clarified by centrifugation, aliquoted, and frozen at -80°C. 468 
 469 
VSV pseudovirus generation used on Vero E6-TMPRSS2 cells  470 
Comparison of Omicron SARS-CoV-2 S VSV to SARS-CoV-2 G614 S (YP 009724390.1) VSV and Beta 471 
S VSV used pseudotyped particles prepared as described previously9,56. Briefly, HEK293T cells in DMEM 472 
supplemented with 10% FBS, 1% PenStrep seeded in 10-cm dishes were transfected with the plasmid 473 
encoding for the corresponding S glycoprotein using lipofectamine 2000 (Life Technologies) following the 474 
manufacturer’s instructions. One day post-transfection, cells were infected with VSV(G*ΔG-luciferase)57 475 
and after 2 h were washed five times with DMEM before adding medium supplemented with anti-VSV-G 476 
antibody (I1- mouse hybridoma supernatant, CRL- 2700, ATCC). Virus pseudotypes were harvested 18-24 477 
h post-inoculation, clarified by centrifugation at 2,500 x g for 5 min, filtered through a 0.45 μm cut off 478 
membrane, concentrated 10 times with a 30 kDa cut off membrane, aliquoted and stored at -80°C.  479 
 480 
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VSV pseudovirus neutralization  481 
Assay performed using Vero E6 cells  482 
Vero-E6 were grown in DMEM supplemented with 10% FBS and seeded into clear bottom white 96 well 483 
plates (PerkinElmer, 6005688) at a density of 20,000 cells per well. The next day, mAbs or plasma were 484 
serially diluted in pre-warmed complete media, mixed with pseudoviruses and incubated for 1 h at 37°C in 485 
round bottom polypropylene plates. Media from cells was aspirated and 50 µl of virus-mAb/plasma 486 
complexes were added to cells and then incubated for 1 h at 37°C. An additional 100 µL of prewarmed 487 
complete media was then added on top of complexes and cells incubated for an additional 16-24 h. 488 
Conditions were tested in duplicate wells on each plate and eight wells per plate contained untreated 489 
infected cells (defining the 0% of neutralization, “MAX RLU” value) and infected cells in the presence of 490 
S309 and S2X259 at 20 µg/ml each (defining the 100% of neutralization, “MIN RLU” value). Virus-491 
mAb/plasma-containing media was then aspirated from cells and 100 µL of a 1:2 dilution of SteadyLite 492 
Plus (Perkin Elmer, 6066759) in PBS with Ca++ and Mg++ was added to cells. Plates were incubated for 15 493 
min at room temperature and then were analyzed on the Synergy-H1 (Biotek). Average of Relative light 494 
units (RLUs) of untreated infected wells (MAX RLUave) was subtracted by the average of MIN RLU (MIN 495 
RLUave) and used to normalize percentage of neutralization of individual RLU values of experimental data 496 
according to the following formula: (1-(RLUx – MIN RLUave) / (MAX RLUave – MIN RLUave)) x 100. Data 497 
were analyzed and visualized with Prism (Version 9.1.0). IC50 (mAbs) and ID50 (plasma) values were 498 
calculated from the interpolated value from the log(inhibitor) versus response, using variable slope (four 499 
parameters) nonlinear regression with an upper constraint of ≤100, and a lower constrain equal to 0. Each 500 
neutralization experiment was conducted on two independent experiments, i.e., biological replicates, where 501 
each biological replicate contains a technical duplicate. IC50 values across biological replicates are 502 
presented as arithmetic mean ± standard deviation. The loss or gain of neutralization potency across spike 503 
variants was calculated by dividing the variant IC50/ID50 by the parental IC50/ID50 within each biological 504 
replicate, and then visualized as arithmetic mean ± standard deviation. 505 
 506 
Assay performed using Vero E6-TMPRSS2 cells  507 
VeroE6-TMPRSS2 were cultured in DMEM with 10% FBS (Hyclone), 1% PenStrep and 8 µg/mL 508 
puromycin (to ensure retention of TMPRSS2) with 5% CO2 in a 37°C incubator (ThermoFisher). Cells 509 
were trypsinized using 0.05% trypsin and plated to be at 90% confluence the following day. In an empty 510 
half-area 96-well plate, a 1:3 serial dilution of sera was made in DMEM and diluted pseudovirus was then 511 
added and incubated at room temperature for 30-60 min before addition of the sera-virus mixture to the 512 
cells at 37°C. 2 hours later, 40 μL of a DMEM solution containing 20% FBS and 2% PenStrep 513 
(ThermoFisher, 10,000 units/mL of penicillin and 10,000 µg/mL of streptomycin when undiluted) was 514 
added to each well. After 17-20 hours, 40 μL/well of One-Glo-EX substrate (Promega) was added to the 515 
cells and incubated in the dark for 5-10 min prior to reading on a BioTek plate reader. Measurements were 516 
done at least in duplicate using distinct batches of pseudoviruses and one representative experiment is 517 
shown. Relative luciferase units were plotted and normalized in Prism (GraphPad). Nonlinear regression of 518 
log(inhibitor) versus normalized response was used to determine IC50 values from curve fits. Normality was 519 
tested using the D’Agostino-Pearson test and in the absence of a normal distribution, Kruskal-Wallis tests 520 
were used to compare two groups to determine whether differences reached statistical significance. Fold 521 
changes were determined by comparing individual IC50 and then averaging the individual fold changes for 522 
reporting. 523 
 524 
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Focus reduction neutralization test 525 

The WA1/2020 strain with a D614G substitution was described previously58.  The B.1.1.529 isolate (hCoV-526 
19/USA/WI-WSLH-221686/2021) was obtained from a nasal swab and passaged on Vero-TMPRSS2 cells 527 
as described59. The B.1.1.529 isolate was sequenced (GISAID:  EPI_ISL_7263803) to confirm the stability 528 
of substitutions. All virus experiments were performed in an approved biosafety level 3 (BSL-3) facility.  529 

Serial dilutions of sotrovimab were incubated with 102 focus-forming units (FFU) of SARS-CoV-530 
2 (WA1/2020 D614G or B.1.1.529) for 1 h at 37°C. Antibody-virus complexes were added to Vero-531 
TMPRSS2 cell monolayers in 96-well plates and incubated at 37°C for 1 h. Subsequently, cells were 532 
overlaid with 1% (w/v) methylcellulose in MEM. Plates were harvested at 30 h (WA1/2020 D614G on 533 
Vero-TMPRSS2 cells) or 70 h (B.1.1.529 on Vero-TMPRSS2 cells) later by removal of overlays and 534 
fixation with 4% PFA in PBS for 20 min at room temperature. Plates with WA1/2020 D614G were washed 535 
and sequentially incubated with an oligoclonal pool of SARS2-2, SARS2-11, SARS2-16, SARS2-31, 536 
SARS2-38, SARS2-57, and SARS2-7160 anti-S antibodies. Plates with B.1.1.529 were additionally 537 
incubated with a pool of mAbs that cross-react with SARS-CoV-1 and bind a CR3022-competing epitope 538 
on the RBD61. All plates were subsequently stained with HRP-conjugated goat anti-mouse IgG (Sigma, 539 
A8924) in PBS supplemented with 0.1% saponin and 0.1% bovine serum albumin. SARS-CoV-2-infected 540 
cell foci were visualized using TrueBlue peroxidase substrate (KPL) and quantitated on an ImmunoSpot 541 
microanalyzer (Cellular Technologies). Antibody-dose response curves were analyzed using non-linear 542 
regression analysis with a variable slope (GraphPad Software), and the half-maximal inhibitory 543 
concentration (IC50) was calculated. 544 

 545 
VSV pseudovirus entry assays using mouse ACE2 546 
HEK293T (293T) cells (ATCC CRL-11268) were cultured in 10% FBS, 1% PenStrep DMEM at 37°C in 547 
a humidified 8% CO2 incubator. Transient transfection of mouse ACE2 in 293T cells was done 18-24 hours 548 
prior to infection using Lipofectamine 2000 (Life Technologies) and an HDM plasmid containing full 549 
length Mouse ACE2 (GenBank: Q8R010, synthesized by GenScript) in OPTIMEM. After 5 hr incubation 550 
at 37°C in a humidified 8% CO2 incubator, DMEM with 10% FBS was added and cells were incubated at 551 
37°C in a humidified 8% CO2 incubator for 18-24 hr. Immediately prior to infection, 293T cells with 552 
transient expression of mouse ACE2 were washed with DMEM 1x, then plated with pseudovirus at a 1:75 553 
dilution in DMEM. Infection in DMEM was done with cells between 60-80% confluence for 2.5 hr prior 554 
to adding FBS and PenStrep to final concentrations of 10% and 1%, respectively. Following 18-24 hr of 555 
infection, One-Glo-EX (Promega) was added to the cells and incubated in the dark for 5 min before reading 556 
on a Synergy H1 Hybrid Multi-Mode plate reader (Biotek). Cell entry levels of pseudovirus generated on 557 
different days (biological replicates) were plotted in GraphPad Prism as individual points, and average cell 558 
entry across biological replicates was calculated as the geometric mean.  559 
 560 
Recombinant RBD protein production 561 
SARS-CoV-2 RBD proteins for SPR binding assays (residues 328-531 of S protein from GenBank  562 
NC_045512.2 with N-terminal signal peptide and C-terminal thrombin cleavage site-TwinStrep-8xHis-tag) 563 
were expressed in Expi293F (Thermo Fisher Scientific) cells at 37°C and 8% CO2. Transfections were 564 
performed using the ExpiFectamine 293 Transfection Kit (Thermo Fisher Scientific). Cell culture 565 
supernatants were collected two to four days after transfection and supplemented with 10x PBS to a final 566 
concentration of 2.5x PBS (342.5 mM NaCl, 6.75 mM KCl and 29.75 mM phosphates). SARS-CoV-2 567 
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RBDs were purified using cobalt-based immobilized metal affinity chromatography followed by buffer 568 
exchange into PBS using a HiPrep 26/10 desalting column (Cytiva) or, for the 2nd batch of Omicron RBD 569 
used for SPR, a Superdex 200 Increase 10/300 GL column (Cytiva).  570 
The SARS-CoV-2 Wuhan-Hu-1 and Delta (B.1.617.2) RBD-Avi constructs were synthesized by GenScript 571 
into pcDNA3.1- with an N-terminal mu-phosphatase signal peptide and a C-terminal octa-histidine tag, 572 
flexible linker, and avi tag (GHHHHHHHHGGSSGLNDIFEAQKIEWHE). The boundaries of the 573 
construct are N-328RFPN331 and 528KKST531-C9,14. Proteins were produced in Expi293F cells (ThermoFisher 574 
Scientific) grown in suspension using Expi293 Expression Medium (ThermoFisher Scientific) at 37°C in a 575 
humidified 8% CO2 incubator rotating at 130 rpm. Cells grown to a density of 3 million cells per mL were 576 
transfected using the ExpiFectamine 293 Transfection Kit (ThermoFisher Scientific) and cultivated for 3-5 577 
days. Proteins were purified from clarified supernatants using a nickel HisTrap HP affinity column (Cytiva) 578 
and washed with ten column volumes of 20 mM imidazole, 25 mM sodium phosphate pH 8.0, and 300 mM 579 
NaCl before elution on a gradient to 500 mM imidazole. Proteins were biotinylated overnight using the 580 
BirA Biotin-Protein Ligase Kit (Avidity) and purified again using the HisTrapHP affinity column. After a 581 
wash and elution as before, proteins were buffer exchanged into 20 mM sodium phosphate pH 8 and 100 582 
mM NaCl, and concentrated using centrifugal filters (Amicon Ultra) before being flash frozen. 583 
 584 
Recombinant production of ACE2 orthologs 585 
Recombinant human ACE2 (residues 19-615 from Uniprot Q9BYF1 with a C-terminal AviTag-10xHis-586 
GGG-tag, and N-terminal signal peptide) was produced by ATUM. Protein was purified via Ni Sepharose 587 
resin followed by isolation of the monomeric hACE2 by size exclusion chromatography using 588 
a Superdex 200 Increase 10/300 GL column (Cytiva) pre-equilibrated with PBS. The mouse (Mus 589 
musculus) ACE2 ectodomain construct (GenBank: Q8R0I0) was synthesized by GenScript and placed into 590 
a pCMV plasmid. The domain boundaries for the ectodomain are residues 19-615. The native signal tag 591 
was identified using SignalP-5.0 (residues 1-18) and replaced with a N-terminal mu-phosphatase signal 592 
peptide. This construct was then fused to a sequence encoding thrombin cleavage site and a human Fc 593 
fragment or a 8x His tag at the C-terminus. ACE2-Fc and ACE2 His constructs were produced in Expi293 594 
cells (Thermo Fisher A14527) in Gibco Expi293 Expression Medium at 37°C in a humidified 8% CO2 595 
incubator rotating at 130 rpm. The cultures were transfected using PEI-25K (Polyscience) with cells grown 596 
to a density of 3 million cells per mL and cultivated for 4-5 days. Proteins were purified from clarified 597 
supernatants using a 1 mL HiTrap Protein A HP affinity column (Cytiva) or a 1 mL HisTrap HP affinity 598 
column (Cytiva), concentrated and flash frozen in 1x PBS, pH 7.4 (10 mM Na2HPO4, 1.8 mM KH2PO4, 599 
2.7 mM KCl, 137 mM NaCl). 600 
 601 
ACE2 binding measurements using surface plasmon resonance 602 
Measurements were performed using a Biacore T200 instrument, in triplicate for monomeric human and 603 
mouse ACE2 and duplicate for dimeric mouse ACE2. A CM5 chip covalently immobilized with 604 
StrepTactin XT (IBA LifeSciences) was used for surface capture of TwinStrepTag-containing RBDs 605 
(Wuhan-Hu-1, Alpha, Beta, Omicron, K417N) and a Cytiva Biotin CAPture Kit was used for surface 606 
capture of biotinylated RBDs (Delta and Wuhan-Hu-1 used for fold-change comparison to Delta). Two 607 
different batches of Omicron RBD were used for the experiments. Running buffer was HBS-EP+ pH 7.4 608 
(Cytiva) and measurements were performed at 25 ̊C. Experiments were performed with a 3-fold dilution 609 
series of human ACE2 (300, 100, 33, 11 nM) or mouse ACE2 (900, 300, 100, 33 nM) and were run as 610 
single-cycle kinetics. Monomeric ACE2 binding data were double reference-subtracted and fit to a 1:1 611 
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binding model using Biacore Evaluation software. High concentrations of dimeric mouse ACE2 exhibited 612 
significant binding to the CAP sensor chip reference flow cell.  613 

614 
Statistical analysis 615 
Neutralization measurements were performed in duplicate and relative luciferase units were converted to 616 
percent neutralization and plotted with a non-linear regression model to determine IC50/ID50 values using 617 
GraphPad PRISM software (version 9.0.0). Comparisons between two groups of paired two-sided data were 618 
made with Wilcoxon rank test. 619 

620 
Data availability 621 
Materials generated in this study will be made available on request and may require a material transfer 622 
agreement. GISAID (www.gisaid.org) data access requires registration. Note: after consulting with the local 623 
Ethical authority, due to health and data protection laws relating to the demographic and clinical 624 
information contained in the manuscript, we will not be able to fully comply with the requirement to share 625 
demographic and clinical data of individual patients/donors in this study. 626 
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Blinding Blinding was not a relevant feature as we were applying a uniform set of techniques across a panel of sera/plasma or monoclonal antibodies 
and tests were repeated two or more times by different individuals. 

Reporting for specific materials, systems and methods 
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems 

n/a Involved in the study 

D IZJ Antibodies 

D IZJ Eukaryotic cell lines 

IZJ D Palaeontology and archaeology 

IZJ D Animals and other organisms 

D IZJ Human research participants 

IZJ D Clinical data 

IZJ D Dual use research of concern 

Antibodies 

Methods 

n/a Involved in the study 

IZJ D Ch I P-seq 

IZJ D Flow cytometry 

IZJ D MRI-based neuroimaging 

Antibodies used Sotrovimab and NTD- and RBD-specific antibodies discovered at VIR Biotechnology were produced as recombinant lgGl in 
mammalian cells as described in material and methods, see details in Extended Data Table 2. As to the other therapeutic mAbs were 
cloned and produced according to publicly available sequences: VH and VL sequences for mAbs COV2-2130 (PDB ID 7L7E), 
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Validation The identity of the produced monoclonal antibodies (produced recombinantly as human lgGl) was confirmed by LC-MS analysis. 
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Cell line source(s) 

Authentication 

Mycoplasma contamination 

Commonly misidentified lines 
(See ICLAC register) 

Cell lines used in this study were obtained from ATCC (HEK293T and Vero E6), ThermoFisher Scientific (Expi CHO cells, 
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