

Accelerated Article Preview

Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization

Received: 14 December 2021

Accepted: 23 December 2021

Accelerated Article Preview Published
online: 23 December 2021

Cite this article as: Cele, S. et al. Omicron
extensively but incompletely escapes Pfizer
BNT162b2 neutralization. *Nature* <https://doi.org/10.1038/d41586-021-03824-5> (2021).

Sandile Cele, Laurelle Jackson, David S. Khoury, Khadija Khan, Thandeka Moyo-Gwete, Houriiyah Tegally, James Emmanuel San, Deborah Cromer, Cathrine Scheepers, Daniel Amoako, Farina Karim, Mallory Bernstein, Gila Lustig, Derseree Archary, Muneerah Smith, Yashica Ganga, Zesuliwe Jule, Kajal Reedoy, Shi-Hsia Hwa, Jennifer Giandhari, Jonathan M. Blackburn, Bernadett I. Gosnell, Salim S. Abdool Karim, Willem Hanekom, NGS-S, COMMIT-KZN Team, Anne von Gottberg, Jinal Bhiman, Richard J. Lessells, Mahomed-Yunus S. Moosa, Miles P. Davenport, Tulio de Oliveira, Penny L. Moore & Alex Sigal

This is a PDF file of a manuscript that has been peer reviewed and accepted for publication in *Nature* and is provided in this format here as a response to the exceptional public-health crisis. This accepted manuscript will continue through the processes of copy editing and formatting to publication of a finalized version of record on nature.com. Please note there may be errors present in this version, which may affect the content, and all legal disclaimers apply.

2 **Omicron extensively but incompletely escapes Pfizer BNT162b2**
3 **neutralization**

4 Sandile Cele^{1,2}, Laurelle Jackson¹, David S. Khoury³, Khadija Khan^{1,2}, Thandeka Moyo-Gwete^{4,5},
5 Houriyah Tegally^{6,7}, James Emmanuel San⁶, Deborah Cromer³, Cathrine Scheepers^{4,5}, Daniel G.
6 Amoako^{2,4}, Farina Karim^{1,2}, Mallory Bernstein¹, Gila Lustig⁸, Derseree Archary^{8,9}, Muneerah Smith¹⁰,
7 Yashica Ganga¹, Zesuliwe Jule¹, Kajal Reedoy¹, Shi-Hsia Hwa^{1,11}, Jennifer Giandhari⁶, Jonathan M.
8 Blackburn^{10,12}, Bernadett I. Gosnell¹³, Salim S. Abdool Karim^{8,14}, Willem Hanekom^{1,11}, NGS-SA⁵,
9 COMMIT-KZN Team^{§§}, Anne von Gottberg^{4,5}, Jinal N. Bhiman^{4,5}, Richard J. Lessells^{6,8}, Mahomed-
10 Yunus S. Moosa¹³, Miles P. Davenport³, Tullio de Oliveira^{6,7,8,15}, Penny L. Moore^{4,5,8,12}, Alex Sigal^{1,2,16*}

11 ¹Africa Health Research Institute, Durban, South Africa. ²School of Laboratory Medicine and Medical
12 Sciences, University of KwaZulu-Natal, Durban, South Africa. ³Kirby Institute, University of New South
13 Wales, Sydney, Australia. ⁴National Institute for Communicable Diseases of the National Health
14 Laboratory Service, Johannesburg, South Africa. ⁵SA MRC Antibody Immunity Research Unit, School
15 of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South
16 Africa. ⁶KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa. ⁷Centre
17 for Epidemic Response and Innovation, School of Data Science and Computational Thinking,
18 Stellenbosch University, Stellenbosch, South Africa. ⁸Centre for the AIDS Programme of Research in
19 South Africa, Durban, South Africa. ⁹Department of Medical Microbiology, University of KwaZulu-
20 Natal, Durban, South Africa ¹⁰Department of Integrative Biomedical Sciences, Faculty of Health
21 Sciences, University of Cape Town, Cape Town, South Africa. ¹¹Division of Infection and Immunity,
22 University College London, London, UK. ¹²Institute of Infectious Disease and Molecular Medicine,
23 University of Cape Town, Cape Town, South Africa. ¹³Department of Infectious Diseases, Nelson R.
24 Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa.
25 ¹⁴Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY,
26 United States ¹⁵Department of Global Health, University of Washington, Seattle, USA. ¹⁶Max Planck
27 Institute for Infection Biology, Berlin, Germany.

28 * Corresponding author. Email: alex.sigal@ahri.org

29

30

31 The emergence of Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa,
32 may compromise vaccine effectiveness and lead to re-infections¹. We investigated whether
33 Omicron escapes antibody neutralization in South Africans vaccinated with Pfizer BNT162b2. We
34 also investigated if Omicron requires the ACE2 receptor to infect cells. We isolated and sequence
35 confirmed live Omicron virus from an infected person in South Africa and compared plasma
36 neutralization of Omicron relative to an ancestral SARS-CoV-2 strain, observing that Omicron still
37 required ACE2 to infect. For neutralization, blood samples were taken soon after vaccination from
38 participants who were vaccinated and previously infected or vaccinated with no evidence of
39 previous infection. Neutralization of ancestral virus was much higher in infected and vaccinated
40 versus vaccinated only participants but both groups showed a 22-fold escape from vaccine elicited
41 neutralization by the Omicron variant. However, in the previously infected and vaccinated group,
42 the level of residual neutralization of Omicron was similar to the level of neutralization of ancestral
43 virus observed in the vaccination only group. These data support the notion that, provided high
44 neutralization capacity is elicited by vaccination/boosting approaches, reasonable effectiveness
45 against Omicron may be maintained.

46

47 The emergence of the Omicron variant of SARS-CoV-2 in November 2021 in South Africa and Botswana
48 was first described in South Africa (<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112333/>) and transmission was rapidly confirmed in Hong
49 Kong². It has raised concerns that, based on the large number of mutations in the spike protein and
50 elsewhere on the virus (<https://covdb.stanford.edu/page/mutation-viewer/#omicron>), this variant
51 will have considerable escape from vaccine elicited immunity^{3,4}. Furthermore, several mutations in
52 the receptor binding domain and S2 are predicted to increase transmission⁴.

54 We previously engineered a human lung cell line (H1299-ACE2, Extended Data Fig. 1) to over-express
55 the human ACE2 (hACE2) receptor⁵. We used it here to both isolate Omicron and test neutralization
56 (Materials and methods). Isolation of the Omicron virus was done using two passages in H1299-ACE2,
57 with the second passage a coculture of infected H1299-ACE2 with the Vero E6 African green monkey
58 kidney cell line. Sequencing of the isolated virus confirmed it was the Omicron variant bearing the
59 R346K mutation. We observed no mutations introduced *in vitro* as majority or minority variants
60 (Extended Data Table 1). H1299-ACE2 cells were similar to Vero E6 in the formation of infection foci
61 in a live virus infection with ancestral D614G and Beta variant viruses but were more sensitive than
62 unmodified Vero E6 (Extended Data Fig. 2A-B). Infection by cell-free Omicron of unmodified Vero E6
63 cells was inefficient (Extended Data Fig. 2C) and we could not use cell-free Omicron infection in Vero
64 E6 cells to generate a useable virus stock of this isolate (Extended Data Fig. 2D).

65 We observed that Omicron infected the H1299 hACE2-expressing cells in a concentration dependent
66 manner but did not infect the parental H1299, indicating that hACE2 is required for Omicron entry
67 (Fig. 1A-B). We then tested the ability of plasma from BNT162b2 vaccinated study participants to
68 neutralize Omicron versus ancestral D614G virus in a live virus neutralization assay. We tested plasma
69 samples after 2 doses of vaccine from 19 participants (Extended Data Tables 2 and 3), with 6 having
70 no previous record of SARS-CoV-2 infection nor detectable SARS-CoV-2 nucleocapsid antibodies
71 indicative of previous infection (Materials and methods). Samples from a later timepoint were
72 available for two of the vaccinated only participants (Extended Data Table 3) and these were also
73 tested. The previously infected and vaccinated participants were infected with either ancestral SARS-
74 CoV-2 strains or the Delta variant (Extended Data Table 3). To quantify neutralization in the live virus
75 neutralization assay, we calculated the focus reduction neutralization test (FRNT₅₀) value, which is the
76 inverse of the plasma dilution required for 50% reduction in infection focus number.

77 Consistent with previous studies⁶⁻⁸, we observed that previously infected and vaccinated individuals
78 had higher neutralization capacity of ancestral virus relative to those vaccinated only (Fig. 1C). For all

79 participants, the ability to neutralize Omicron was lower than ancestral virus (Fig. 1C). Geometric
80 mean titer (GMT) $FRNT_{50}$ for all participants declined from 1963 to 89, a 22-fold drop (Fig. 1D, 95% CI
81 16-30). The fold drop was 22-fold both in individuals who were previously infected and vaccinated
82 (95% CI 16-34) and vaccinated only (95% CI 15-32, Fig. 1D). Six of the samples showed fitted values for
83 50% Omicron neutralization which corresponded to a plasma concentration which was higher than
84 the most concentrated plasma tested (a 1:25 dilution). This included the two samples collected at a
85 later timepoint post-vaccination, one of which showed a complete knockout of neutralization activity
86 with Omicron (Extended Data Table 3, Fig. 1C). Excluding these 6 values from the analysis changed the
87 Omicron effect to a 19-fold drop (95% CI 14-25) well within the 95% confidence intervals of the fold-
88 drops for the raw values (Fig. 1D). Interestingly, Omicron virus neutralization by samples from
89 previously infected and vaccinated participants was similar to ancestral virus neutralization by
90 samples from participants vaccinated with 2 doses of BNT162b2 but not previously infected (Fig. 1C).
91 GMT $FRNT_{50}$ for Omicron in the previously infected and vaccinated group was 305 (95% CI 134-695)
92 while GMT $FRNT_{50}$ for ancestral virus in the vaccinated only group was 263 (95% CI 147-472).

93 We compared these results with neutralization of the Beta variant^{5,9-15} using Beta and ancestral virus
94 infection of H1299-ACE2 (Extended Data Fig. 3A) and Vero E6 (Extended Data Fig. 3B) cells. Fold-drop
95 relative to the ancestral D614G virus was 4.3 for H1299-ACE2 and 5.0 for Vero E6. These two cell lines
96 therefore gave similar results and showed that Omicron exhibited approximately 4-fold greater escape
97 relative to Beta in our assays.

98 Our study was not designed to reliably evaluate vaccine efficacy or protection from severe disease.
99 However, a prediction of vaccine efficacy after a 22-fold drop in neutralization can be made in
100 BNT162b2 vaccinated and vaccinated boosted participants based on data from randomized control
101 trials using a model which relates neutralization level to vaccine efficacy^{16,17}. Using this model and the
102 fold-drop observed here on previous datasets (Materials and methods), we predict a vaccine efficacy
103 for preventing Omicron symptomatic infection of 73% (95% CI 58-83%) in vaccinated and boosted
104 individuals and 35% (95% CI 20-50%) for vaccinated only individuals, essentially compromising the
105 ability of the vaccine to protect against infection in the latter but not the former group (Fig. 1E). We
106 note that the predictions are similar to actual vaccine efficacy estimates recently reported in the UK¹⁸.

107 Shortly after we released results, several other groups reported results^{2,19-22} including Pfizer- BioNTech
108 (<https://www.businesswire.com/news/home/20211208005542/en/>). These results mirror ours, with
109 large fold-drops in neutralization of Omicron by vaccine elicited immunity, neutralizing monoclonal
110 antibodies, and plasma from convalescent individuals infected by other variants. Interestingly, the
111 Pfizer-BioNTech study reports that boosting seems to increase neutralization breadth which reduces
112 the fold-drop of Omicron mediated escape, and this has been independently confirmed²⁰. We do not
113 see such a qualitative effect in the vaccinated previously infected participants in this study, where we
114 observe similar fold-drops to vaccinated only.

115 Limitations of this study include the presence of an R346K substitution in our virus stock. This putative
116 escape mutation²³ which may confer moderate antibody resistance
117 (https://jbloomlab.github.io/SARS2_RBD_Ab_escape_maps/escape-calc/), is not found in the
118 majority of Omicron genomes. Also, the timing of sample collection soon after vaccination (Table S2,
119 S3) does not account for the waning of neutralization capacity^{24,25}.

120 Thus far, a milder course of Omicron infection was observed in South Africa relative to previous
121 infection waves in terms of reported numbers of ICU and ventilated patients (e.g., <https://covid-19dashboard.news24.com/>) collated from the National Institute for Communicable Diseases DatCov
122 system). While there may be other, yet unproven, contributing factors to lower pathogenicity²⁶, pre-
123 existing immunity would be higher in the Omicron wave because of vaccination, as well as immunity
124 elicited by previous infection in one of three preceding infection waves in South Africa²⁶. Therefore,
125 the incomplete Omicron escape from previous immunity described here may be an important factor

127 accounting for the milder course of infection. Despite the extensive neutralization escape of Omicron,
128 residual neutralization levels may still be sufficient to protect from severe disease^{16,17}. Other facets of
129 the adaptive immune response elicited by vaccination and previous infection may increase protection.
130 Furthermore, our observation that vaccination combined with previous infection neutralizes Omicron
131 to a similar extent as vaccination without previous infection neutralizes ancestral virus, indicates that
132 protection from symptomatic infection may occur when vaccination is combined with previous
133 infection or boosting. This may explain why Pfizer BNT162b2 vaccination has been shown to
134 substantially decrease the risk of hospital admission due to Omicron infection in South Africa
135 (<https://www.discovery.co.za/corporate/health-insights-vaccines-real-world-effectiveness>) and
136 supports the use of further vaccination and boosting to combat Omicron.

137

138 **Materials and methods**

139 Informed consent and ethical statement

140 Blood samples were obtained after written informed consent from hospitalized adults with PCR-
141 confirmed SARS-CoV-2 infection and/or vaccinated individuals who were enrolled in a prospective
142 cohort study approved by the Biomedical Research Ethics Committee at the University of KwaZulu-
143 Natal (reference BREC/00001275/2020). Use of residual swab sample was approved by the University
144 of the Witwatersrand Human Research Ethics Committee (HREC) (ref. M210752).

145 Data availability statement

146 Sequence of outgrown virus has been deposited in GISAID with accession EPI_ISL_7358094. Raw
147 images of the data are available upon reasonable request.

148 Code availability

149 The sequence analysis and visualization pipeline is available on GitHub
150 (<https://github.com/nextstrain/ncov>). Image analysis and curve fitting scripts in MATLAB v.2019b are
151 available on GitHub (<https://github.com/sigallab/NatureMarch2021>).

152 Competing interest statement

153 Salim S. Abdoool Karim is a member in the COVID advisory panel for Emerging Markets at Pfizer. The
154 authors declare no other competing interests.

155 Author contributions

156 AS, PLM, TdO. and RJL conceived the study. AS, SC, K., TMG. and LJ designed the study and
157 experiments. AvG, PLM, and JNB identified and provided the virus sample. SHH, generated and
158 provided plaque purified Beta variant virus. M-YSM, FK, BIG, MB, KK, and YG set up and managed the
159 cohort and cohort data. SC, LJ, KK, TMG, HT, JES, CS, DGA, GL, DA, MS, YG, ZJ, and KR, performed
160 experiments and sequence analysis with input from AS, TdO, RJL, and JMB. DSK, DC and MPD
161 performed predictions of vaccine efficacy based on the data. AS, SC, PLM, TdO, LJ, KK, WH, SSAK, DSK,
162 MPD, JNB, RJL, M-YSM interpreted data. AS, LJ, DSK, SC, GL, PLM, and MPD prepared the manuscript
163 with input from all authors.

164 Whole-genome sequencing, genome assembly and phylogenetic analysis

165 cDNA synthesis was performed on the extracted RNA using random primers followed by gene-specific
166 multiplex PCR using the ARTIC V.3 protocol (<https://www.protocols.io/view/covid-19-artic-v3-illumina-library-construction-an-bibtkann>). In brief, extracted RNA was converted to cDNA using the
167 Superscript IV First Strand synthesis system (Life Technologies) and random hexamer primers. SARS-
168 CoV-2 whole-genome amplification was performed by multiplex PCR using primers designed using
169

170 Primal Scheme (<http://primal.zibraproject.org/>) to generate 400-bp amplicons with an overlap of 70
171 bp that covers the 30 kb SARS-CoV-2 genome. PCR products were cleaned up using AmpureXP
172 purification beads (Beckman Coulter) and quantified using the Qubit dsDNA High Sensitivity assay on
173 the Qubit 4.0 instrument (Life Technologies). We then used the Illumina Nextera Flex DNA Library Prep
174 kit according to the manufacturer's protocol to prepare indexed paired-end libraries of genomic DNA.
175 Sequencing libraries were normalized to 4 nM, pooled and denatured with 0.2 N sodium acetate.
176 Then, a 12-pM sample library was spiked with 1% PhiX (a PhiX Control v.3 adaptor-ligated library was
177 used as a control). We sequenced libraries on a 500-cycle v.2 MiSeq Reagent Kit on the Illumina MiSeq
178 instrument (Illumina). We assembled paired-end fastq reads using Genome Detective 1.126
179 (<https://www.genomedetective.com>) and the Coronavirus Typing Tool. We polished the initial
180 assembly obtained from Genome Detective by aligning mapped reads to the reference sequences and
181 filtering out low-quality mutations using the bcftools 1.7-2 mpileup method. Mutations were
182 confirmed visually with BAM files using Geneious software (Biomatters). P2 stock was sequenced and
183 confirmed Omicron with the following substitutions:
184 E:T9I,M:D3G,M:Q19E,M:A63T,N:P13L,N:R203K,N:G204R,ORF1a:K856R,ORF1a:L2084I,ORF1a:A2710T,
185 ORF1a:T3255I,ORF1a:P3395H,ORF1a:I3758V,ORF1b:P314L,ORF1b:I1566V,ORF9b:P10S,S:A67V,S:T95I
186 ,S:Y145D,S:L212I,S:G339D,S:R346K,S:S371L,S:S373P,S:S375F,S:K417N,S:N440K,S:G446S,S:S477N,S:T4
187 78K,S:E484A,S:Q493R,S:G496S,S:Q498R,S:N501Y,S:Y505H,S:T547K,S:D614G,S:H655Y,S:N679K,S:P681
188 H,S:N764K,S:D796Y,S:N856K,S:Q954H,S:N969K,S:L981F. Deletions: N:E31-,N:R32-,N:S33-
189 ,ORF1a:S2083-,ORF1a:L3674-,ORF1a:S3675-,ORF1a:G3676-,ORF9b:E27-,ORF9b:N28-,ORF9b:A29-
190 ,S:H69-,S:V70-,S:G142-,S:V143-,S:Y144-,S:N211-. Sequence was deposited in GISAID, accession:
191 EPI_ISL_7358094.

192 SARS-CoV-2 nucleocapsid enzyme-linked immunosorbent assay (ELISA)

193 2 µg/ml nucleocapsid protein (Biotech Africa; Catalogue number: BA25-P) was used to coat 96-well,
194 high-binding plates and incubated overnight at 4°C. The plates were incubated in a blocking buffer
195 consisting of 5% skimmed milk powder, 0.05% Tween 20, 1x PBS. Plasma samples were diluted to a
196 1:100 dilution in a blocking buffer and added to the plates. Horseradish peroxidase (HRP) conjugated
197 IgG secondary antibody was diluted to 1:3000 in blocking buffer and added to the plates followed by
198 Tetramethylbenzidine (TMB) peroxidase substrate (Thermo Fisher Scientific). Upon stopping the
199 reaction with 1 M H₂SO₄, absorbance was measured at a 450 nm wavelength.

200 Cells

201 Vero E6 cells (ATCC CRL-1586, obtained from Cellonex in South Africa) were propagated in complete
202 growth medium consisting of Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal bovine
203 serum (Hyclone) containing 10mM of HEPES, 1mM sodium pyruvate, 2mM L-glutamine and 0.1mM
204 nonessential amino acids (Sigma-Aldrich). Vero E6 cells were passaged every 3–4 days. H1299 cell lines
205 were propagated in growth medium consisting of complete Roswell Park Memorial Institute (RPMI)
206 1640 medium with 10% fetal bovine serum containing 10mM of HEPES, 1mM sodium pyruvate, 2mM
207 L-glutamine and 0.1mM nonessential amino acids. H1299 cells were passaged every second day. The
208 H1299-E3 (H1299-ACE2, clone E3) cell line was derived from H1299 (CRL-5803) as described in our
209 previous work⁵ and Figure S1. Briefly, vesicular stomatitis virus G glycoprotein (VSVG) pseudotyped
210 lentivirus containing hACE2 was used to spinfect H1299 cells. ACE-2 transduced H1299 cells
211 (containing an endogenously yellow fluorescent protein labelled histone H2AZ gene²⁷) were then
212 subcloned at the single cell density in 96-well plates (Eppendorf) in conditioned media derived from
213 confluent cells. After 3 weeks, wells were detached using a 0.25% trypsin-EDTA solution (Gibco) and
214 plated in two replicate plates, where the first plate was used to determine infectivity and the second
215 was stock. The first plate was screened for the fraction of mCherry positive cells per cell clone upon
216 infection with a SARS-CoV-2 mCherry expressing spike pseudotyped lentiviral vector. Screening was
217 performed using a Metamorph-controlled (Molecular Devices, Sunnyvale, CA) Nikon TiE motorized
218 microscope (Nikon Corporation, Tokyo, Japan) with a 20x, 0.75 NA phase objective, 561 nm laser line,

219 and 607 nm emission filter (Semrock, Rochester, NY). Images were captured using an 888 EMCCD
220 camera (Andor). The clone with the highest fraction of mCherry expression was expanded from the
221 stock plate and denoted H1299-E3. Infectivity was confirmed with mCherry expressing lentivirus by
222 flow cytometry using a BD Fortessa instrument and analyzed using BD FACSDiva Software (BD
223 Biosciences). This clone was used in the outgrowth and focus forming assay. Cell lines have not been
224 authenticated. The cell lines have been tested for mycoplasma contamination and are mycoplasma
225 negative.

226 Virus expansion

227 All work with live virus was performed in Biosafety Level 3 containment using protocols for SARS-CoV-
228 2 approved by the Africa Health Research Institute Biosafety Committee. ACE2-expressing H1299-E3
229 cells were seeded at 4.5×10^5 cells in a 6 well plate well and incubated for 18–20 h. After one DPBS
230 wash, the sub-confluent cell monolayer was inoculated with 500 μ L universal transport medium
231 diluted 1:1 with growth medium filtered through a 0.45- μ m filter. Cells were incubated for 1 h. Wells
232 were then filled with 3 mL complete growth medium. After 4 days of infection (completion of passage
233 1 (P1)), cells were trypsinized, centrifuged at 300 rcf for 3 min and resuspended in 4 mL growth
234 medium. Then 2 mL was added to Vero E6 cells that had been seeded at 2×10^5 cells per mL, 5mL
235 total, 18–20 h earlier in a T25 flask (approximately 1:8 donor-to-target cell dilution ratio) for cell-to-
236 cell infection. The coculture of ACE2-expressing H1299-E3 and Vero E6 cells was incubated for 1 h and
237 the flask was then filled with 7 mL of complete growth medium and incubated for 4 days. The viral
238 supernatant (passage 2 (P2) stock) was used for experiments. Further optimization of the viral
239 outgrowth protocol used for subsequent omicron isolates showed that addition of 4 mL instead of 2
240 mL of infected H1299-E3 cells to Vero E6 cells that had been seeded at 2×10^5 cells per mL, 20 mL
241 total, 18–20 h earlier in a T75 flask gave P2 stocks with substantially higher titers which could
242 detectably infect Vero E6 cells. The Omicron virus isolate is available from the authors contingent on
243 verification that it will be received and used in a Biosafety Level 3 facility.

244 Live virus neutralization assay

245 H1299-E3 cells were plated in a 96-well plate (Corning) at 30,000 cells per well 1 day pre-infection.
246 Plasma was separated from EDTA-anticoagulated blood by centrifugation at 500 rcf for 10 min and
247 stored at -80 °C. Aliquots of plasma samples were heat-inactivated at 56 °C for 30 min and clarified by
248 centrifugation at 10,000 rcf for 5 min. Virus stocks were used at approximately 50-100 focus-forming
249 units per microwell and added to diluted plasma. Antibody–virus mixtures were incubated for 1 h at
250 37 °C, 5% CO₂. Cells were infected with 100 μ L of the virus–antibody mixtures for 1 h, then 100 μ L of
251 a 1X RPMI 1640 (Sigma-Aldrich, R6504), 1.5% carboxymethylcellulose (Sigma-Aldrich, C4888) overlay
252 was added without removing the inoculum. Cells were fixed 18 h post-infection using 4% PFA (Sigma-
253 Aldrich) for 20 min. Foci were stained with a rabbit anti-spike monoclonal antibody (BS-R2B12,
254 GenScript A02058) at 0.5 μ g/mL in a permeabilization buffer containing 0.1% saponin (Sigma-Aldrich),
255 0.1% BSA (Sigma-Aldrich) and 0.05% Tween-20 (Sigma-Aldrich) in PBS. Plates were incubated with
256 primary antibody overnight at 4 °C, then washed with wash buffer containing 0.05% Tween-20 in PBS.
257 Secondary goat anti-rabbit HRP conjugated antibody (Abcam ab205718) was added at 1 μ g/mL and
258 incubated for 2 h at room temperature with shaking. TrueBlue peroxidase substrate (SeraCare 5510-
259 0030) was then added at 50 μ L per well and incubated for 20 min at room temperature. Plates were
260 imaged in an ImmunoSpot Ultra-V S6-02-6140 Analyzer ELISPOT instrument with BioSpot Professional
261 built-in image analysis (C.T.L.).

262 Statistics and fitting

263 All statistics and fitting were performed using custom code in MATLAB v.2019b. Neutralization data
264 were fit to:

265 $Tx = 1/1 + (D/ID_{50})$.

266 Here T_x is the number of foci normalized to the number of foci in the absence of plasma on the same
267 plate at dilution D and ID_{50} is the plasma dilution giving 50% neutralization. $FRNT_{50} = 1/ID_{50}$. Values of
268 $FRNT_{50} < 1$ are set to 1 (undiluted), the lowest measurable value. We note that the most concentrated
269 plasma dilution was 1:25 and therefore $FRNT_{50} < 25$ were extrapolated. We have marked these values
270 in Figure 1C and calculate the fold-change $FRNT_{50}$ either for the raw values or for values where $FRNT_{50}$
271 > 25 in Figure 1D.

272 Estimating vaccine efficacy from neutralization titers

273 Previously, the fold reduction in neutralization was shown to correlate and predict vaccine efficacy
274 against symptomatic infection with ancestral SARS-CoV-2¹⁷, and more recently with variants of
275 concern¹⁶ in data from RCTs. The model was used here to estimate the vaccine efficacy against
276 Omicron based on the fold-drop observed in this study applied to the RCT data. Briefly, vaccine efficacy
277 (VE) was estimated based on the (\log_{10}) fold-drop in neutralization titer to Omicron (f), and the (\log_{10})
278 mean neutralization titer as a fold of the mean convalescent titer reported for BNT162b2 in phase 1/2
279 trials (μ) using the equation:

280
$$VE(\mu, f) = \int_{-\infty}^{\infty} N(x, \mu - f, \sigma) \frac{1}{1 + e^{-k(x - x_{50})}} dx.$$

281 Here, N is the probability density function of a normal distribution with mean $\mu - f$ and standard
282 deviation σ , and k and x_{50} are the parameters of the logistic function relating neutralization to
283 protection for the Pfizer-BNT162b2 vaccine which were fitted from RCT data: $\sigma = 0.46$, $k = 3$ and
284 $x_{50} = \log_{10} 0.2$ for symptomatic infection¹⁷. Importantly, $\mu = \log_{10} 2.4$ for trial participants
285 vaccinated with two doses of BNT162b2, and $\mu = \log_{10} 12$ for vaccinated and boosted trial
286 participants^{16,17}.

287 Acknowledgements

288 This study was supported by the Bill and Melinda Gates award INV-018944 (AS), National Institutes of
289 Health award R01 AI138546 (AS), and South African Medical Research Council awards (AS, TdO, PLM)
290 and the UK Foreign, Commonwealth and Development Office and Wellcome Trust (Grant no
291 221003/Z/20/Z, PLM). PLM is also supported by the South African Research Chairs Initiative of the
292 Department of Science and Innovation and the NRF (Grant No 98341). DSK, DC, and MPD are
293 supported by NHMRC (Australia) Fellowship / Investigator grants. DA was supported by the European
294 and Developing Countries Clinical Trials Partnership (EDCTP) Senior Fellowship (Grant No TMA2017SF-
295 1960). The funders had no role in study design, data collection and analysis, decision to publish, or
296 preparation of the manuscript.

297

298 **References**

299 1 Pulliam, J. R. C. *et al.* Increased risk of SARS-CoV-2 reinfection associated with emergence of
300 the Omicron variant in South Africa. *medRxiv*, 2021.2011.2011.21266068,
301 doi:10.1101/2021.11.11.21266068 (2021).

302 2 Lu, L. *et al.* Neutralization of SARS-CoV-2 Omicron variant by sera from BNT162b2 or
303 Coronavac vaccine recipients. *medRxiv*, 2021.2012.2013.21267668,
304 doi:10.1101/2021.12.13.21267668 (2021).

305 3 Harvey, W. T. *et al.* SARS-CoV-2 variants, spike mutations and immune escape. *Nature
Reviews Microbiology* **19**, 409-424, doi:10.1038/s41579-021-00573-0 (2021).

307 4 Tao, K. *et al.* The biological and clinical significance of emerging SARS-CoV-2 variants. *Nature
Reviews Genetics* **22**, 757-773, doi:10.1038/s41576-021-00408-x (2021).

309 5 Cele, S. *et al.* Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma.
Nature **593**, 142-146, doi:10.1038/s41586-021-03471-w (2021).

311 6 Keeton, R. *et al.* Prior infection with SARS-CoV-2 boosts and broadens Ad26.COV2.S
312 immunogenicity in a variant-dependent manner. *Cell Host Microbe* **29**, 1611-1619 e1615,
313 doi:10.1016/j.chom.2021.10.003 (2021).

314 7 Stamatatos, L. *et al.* (American Association for the Advancement of Science, 2021).

315 8 Ebinger, J. E. *et al.* Antibody responses to the BNT162b2 mRNA vaccine in individuals
316 previously infected with SARS-CoV-2. *Nature Medicine* **27**, 981-984, doi:10.1038/s41591-
317 021-01325-6 (2021).

318 9 Tegally, H. *et al.* Detection of a SARS-CoV-2 variant of concern in South Africa. *Nature* **592**,
319 438-443, doi:10.1038/s41586-021-03402-9 (2021).

320 10 Garcia-Beltran, W. F. *et al.* Multiple SARS-CoV-2 variants escape neutralization by vaccine-
321 induced humoral immunity. *Cell* **184**, 2372-2383. e2379 (2021).

322 11 Wibmer, C. K. *et al.* SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19
323 donor plasma. *Nat Med* **27**, 622-625, doi:10.1038/s41591-021-01285-x (2021).

324 12 Zhou, D. *et al.* Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-
325 induced sera. *Cell* **184**, 2348-2361 e2346, doi:10.1016/j.cell.2021.02.037 (2021).

326 13 Planas, D. *et al.* Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to
327 neutralizing antibodies. *Nat Med* **27**, 917-924, doi:10.1038/s41591-021-01318-5 (2021).

328 14 Wang, P. *et al.* Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. *Nature* **593**,
329 130-135, doi:10.1038/s41586-021-03398-2 (2021).

330 15 Wang, Z. *et al.* mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants.
Nature **592**, 616-622, doi:10.1038/s41586-021-03324-6 (2021).

332 16 Cromer, D. *et al.* Neutralising antibody titres as predictors of protection against SARS-CoV-2
333 variants and the impact of boosting: a meta-analysis. *The Lancet Microbe* (2021).

334 17 Khoury, D. S. *et al.* Neutralizing antibody levels are highly predictive of immune protection
335 from symptomatic SARS-CoV-2 infection. *Nature medicine*, 1-7 (2021).

336 18 Andrews, N. *et al.* Effectiveness of COVID-19 vaccines against the Omicron (B.1.1.529)
337 variant of concern. *medRxiv*, 2021.2012.2014.21267615, doi:10.1101/2021.12.14.21267615
338 (2021).

339 19 Wilhelm, A. *et al.* Reduced Neutralization of SARS-CoV-2 Omicron Variant by Vaccine Sera
340 and monoclonal antibodies. *medRxiv*, 2021.2012.2007.21267432,
341 doi:10.1101/2021.12.07.21267432 (2021).

342 20 Garcia-Beltran, W. F. *et al.* mRNA-based COVID-19 vaccine boosters induce neutralizing
343 immunity against SARS-CoV-2 Omicron variant. *medRxiv*, 2021.2012.2014.21267755,
344 doi:10.1101/2021.12.14.21267755 (2021).

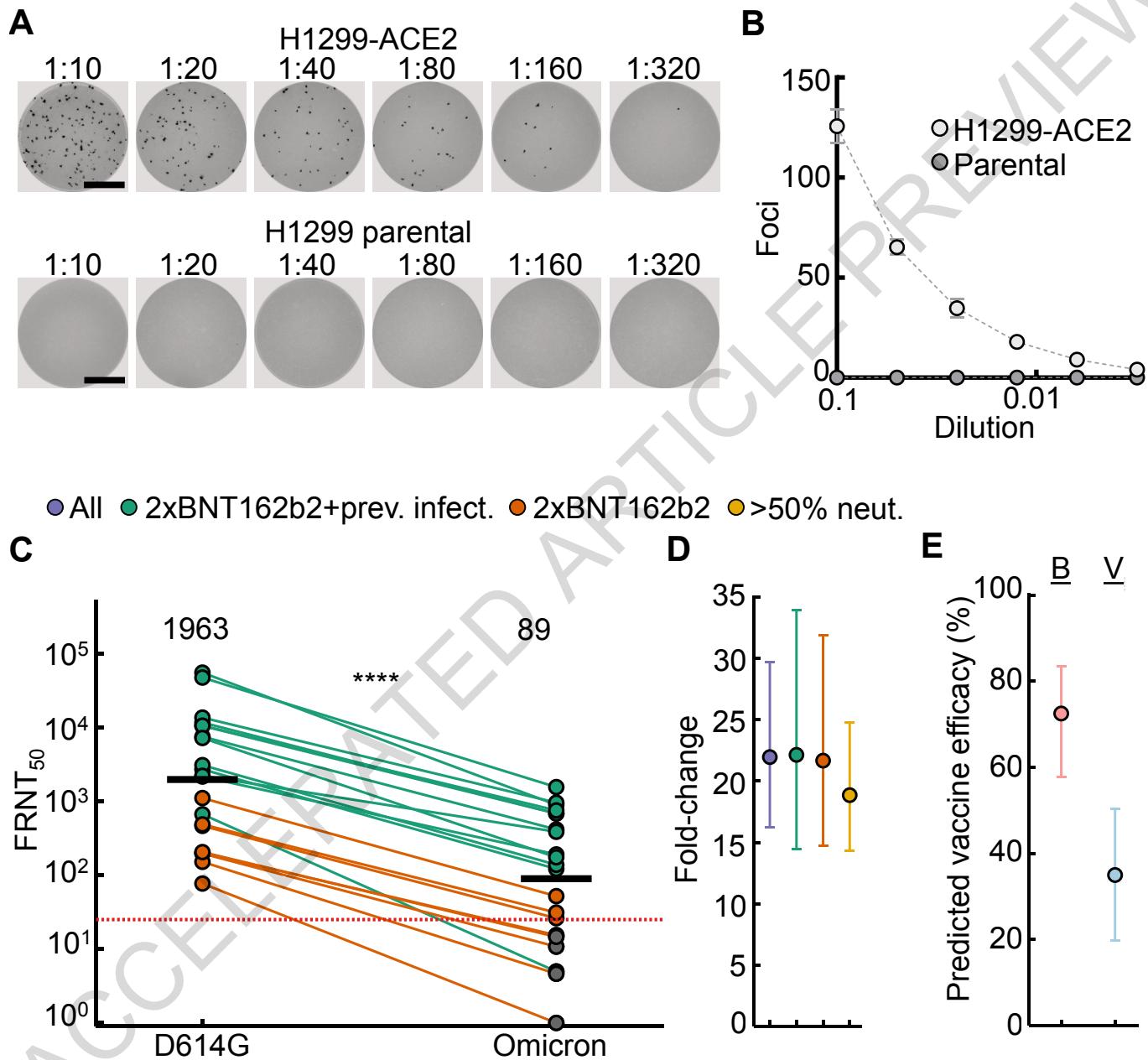
345 21 Rössler, A., Riepler, L., Bante, D., Laer, D. v. & Kimpel, J. SARS-CoV-2 B.1.1.529 variant
346 (Omicron) evades neutralization by sera from vaccinated and convalescent individuals.
medRxiv, 2021.2012.2008.21267491, doi:10.1101/2021.12.08.21267491 (2021).

348 22 Cao, Y. *et al.* B.1.1.529 escapes the majority of SARS-CoV-2 neutralizing antibodies of diverse
349 epitopes. *bioRxiv*, 2021.2012.2007.470392, doi:10.1101/2021.12.07.470392 (2021).

350 23 Weisblum, Y. *et al.* Escape from neutralizing antibodies by SARS-CoV-2 spike protein
351 variants. *Elife* **9**, e61312 (2020).

352 24 Goldberg, Y. *et al.* Waning immunity of the BNT162b2 vaccine: A nationwide study from
353 Israel. *medRxiv*, 2021.2008.2024.21262423, doi:10.1101/2021.08.24.21262423 (2021).

354 25 Chemaiteily, H. *et al.* Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection
355 in Qatar. *New England Journal of Medicine* (2021).


356 26 Cele, S. *et al.* SARS-CoV-2 evolved during advanced HIV disease immunosuppression has
357 Beta-like escape of vaccine and Delta infection elicited immunity. *medRxiv*,
358 2021.2009.2014.21263564, doi:10.1101/2021.09.14.21263564 (2021).

359 27 Sigal, A. *et al.* Variability and memory of protein levels in human cells. *Nature* **444**, 643-646,
360 doi:10.1038/nature05316 (2006).

361

362

Fig. 1

363 Figure legend

364 **Figure 1: ACE2 dependence and neutralization of the Omicron variant by Pfizer BNT162b2 elicited**
365 **immunity.** (A) Representative images of infection foci in wells of a multi-well plate in a titration of
366 live SARS-CoV-2 Omicron virus on H1299-ACE2 and H1299 parental cells. Numbers above well
367 images denote viral stock dilution. Scale bar is 2mm. (B) Quantified number of foci as a function of
368 Omicron virus stock dilution. Mean and standard deviation of 6 replicates from 2 independent
369 experiments. (C) Neutralization of Omicron virus compared to D614G ancestral virus by plasma from
370 participants vaccinated with two doses of BNT162b2 and previously SARS-CoV-2 infected (green) or
371 uninfected (orange). Numbers in black above each virus strain are geometric mean titers (GMT) of
372 the reciprocal plasma dilution ($FRNT_{50}$) resulting in 50% reduction in infection foci. Red horizontal
373 line denotes most concentrated plasma used. 21 samples were tested from n=19 participants in 2
374 independent experiments (n=13 vaccinated and previously infected and n=6 vaccinated only). Grey
375 points denote measurements where 50% neutralization was not achieved with the most
376 concentrated plasma used. $p=4.8 \times 10^{-5}$ as determined by the Wilcoxon rank sum test. (D) Geometric
377 means and 95% confidence intervals of fold-changes between ancestral D614G and Omicron
378 neutralization. Purple denotes all participants, green denotes vaccinated previously infected, orange
379 denotes vaccinated only, and yellow denotes all participants excluding those where 50%
380 neutralization was not achieved. (E) Predicted vaccine efficacy and 95% confidence intervals against
381 symptomatic infection using previous data from RCTs and the 22-fold drop observed in this study.
382 Predictions are for boosted (B, red) or vaccinated only (V, blue).

383

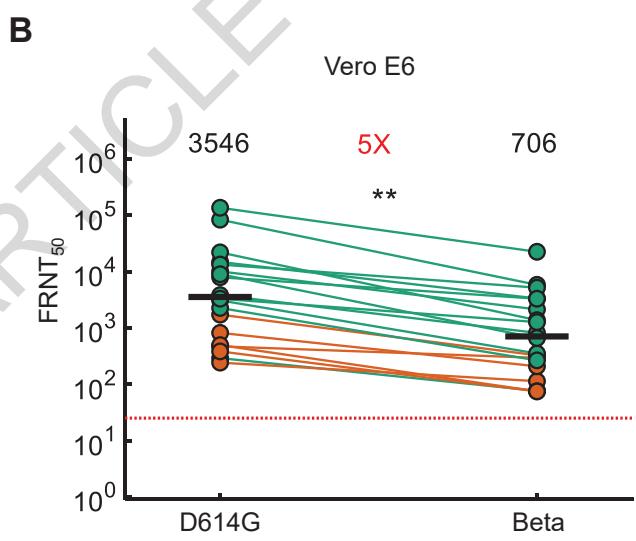
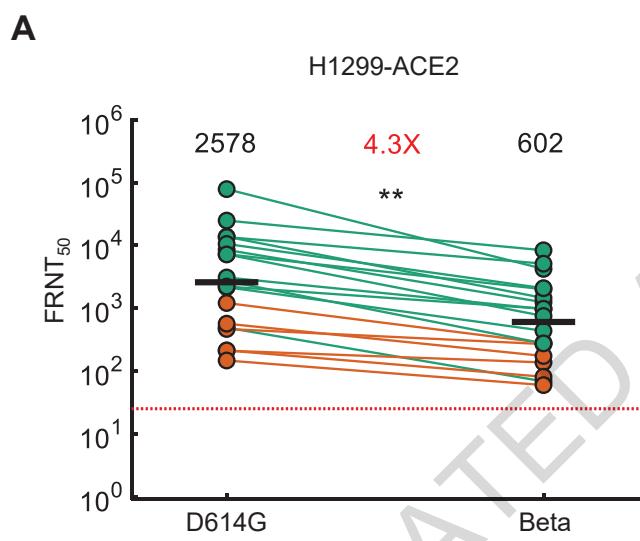
Extended Data Fig. 1

384 Supplementary Figure legends

385 **Extended Data Figure 1: Generation of H1299-ACE2 clonal cell line.** (A) The H1299 human non-small
386 cell lung carcinoma cell line with YFP labelled histone H2AZ was spinfected with the pHAGE2-EF1a-
387 Int-ACE2 lentivector. Cells were single cell cloned by limiting dilution in a 384-well plate. Clones were
388 expanded into duplicate 96-well plates, where one plate was used to select infectable clones based
389 on mCherry signal from infection with SARS-CoV-2 mCherry expressing spike pseudotyped lentivirus.
390 Clones were chosen based on infectability and expanded from the non-infected replicate 96-well
391 plate. (B) Flow cytometry of SARS-CoV-2 mCherry expressing spike pseudotyped lentivirus infection
392 in H1299-ACE2 cells versus H1299 parental cells.

393

Extended Data Fig. 2

394 **Extended Data Figure 2: Comparison of SARS-CoV-2 infection in H1299-ACE2 and Vero E6 cells.**
395 Both H1299-ACE2 and Vero E6 cells were infected with the same viral stock in the same experiment
396 with D614G virus (A) or Beta virus (B) and a focus forming assay was performed. (C) Focus forming
397 assay with stock of Omicron virus isolate on H1299-ACE2 and Vero E6 cells. (D) Comparison of
398 passage 2 (P2) and passage 3 (P3) stock, where P3 stock was generated by infection of 1 mL of cell-
399 free P2 stock in 20 mL of Vero E6 cells seeded at 2×10^5 cells per mL and incubated over 4 days.
400 Numbers above well images denote viral stock dilution. Scale bar is 2mm.

401

ACCELERATED ARTICLE PREVIEW

Extended Data Fig. 3

402 **Extended Data Figure S3: Neutralization of the Beta variant by Pfizer BNT162b2 elicited immunity.**
403 Neutralization of the Beta variant virus compared to D614G ancestral virus in H1299-ACE2 (A) or
404 Vero E6 cells (B) in participants vaccinated with BNT162b2 and infected by SARS-CoV-2 (green) or
405 vaccinated only (orange). Numbers in black above each virus strain are geometric mean titers (GMT)
406 of the reciprocal plasma dilution (FRNT50) resulting in 50% reduction in the number of infection foci.
407 Numbers in red denote fold-change in GMT between virus strain on the left and the virus strain on
408 the right of each panel. Red horizontal line denotes most concentrated plasma used. Samples were
409 tested from the n=19 participants described in Table S2 and S3, where n=6 were vaccinated only and
410 n=13 were vaccinated and previously infected. p=0.006 for both (A) and (B) as determined by the
411 Wilcoxon rank sum test.

412

Extended Data Table 1

Amino Acid Change	Nucleotide Change	Codon(s) Change	K032623_N67
A67V	21762C>T	21761 GCT>GTT	GCT - 0 GTT - 133
*H69_V70del	21766_21771delACATGT	21766_21771ACATGT >del	ACATGT - 0 del - 123
T95I	21846C>T	21845 ACT>ATT	ACT - 0 ATT - 164
*G142D	21987_21989delGTG	21987_21989GTG >del	GTG - 0 del - 432
*V143_Y145del	21990_21995delTTTATT	21990_21995TTTATT >del	TTTATT - 0 del - 432
*L212I	22194_22196delATT	22194_22196ATT >del	ATT - 0 del - 146
*R214_D215	22204_22205insGAGCCAGAA	22204_22205GAGCCAGAA >ins	WT - 37 insGAGCCAGAA - 74
G339D	22578G>A	22577 GGT>GAT	GGT - 0 GAT - 255
R346K	22599G>A	22598 AGA>AAA	AGA - 1 AAA - 250
S371L	22674C>T	22674 TCC>CTC	TCC - 0 CTC - 152
S373P	22679T>C	22679 TCA>CCA	TCA - 3 CCA - 166
S375F	22686C>T	22685 TCC>TTC	TCC - 0 TTC - 160
K417T	22813G>T	22811 AAG>AAT	AAG - 3 AAT - 934
N440K	22882T>G	22880 AAT>AAG	AAT - 3 AAG - 791
G446S	22898G>A	22898 GGT>AGT	GGT - 30 AGT - 870
T478K	22995C>A	22994 ACA>AAA	ACA - 0 AAA - 59
E484A	23013A>C	23012 GAA>GCA	GAA - 0 GCA - 110
Q493R	23040A>G	23039 CAA>CGA	CAA - 0 CGA - 128

Extended Data Table 1 (cont'd)

Amino Acid Change	Nucleotide Change	Codon(s) Change	K032623_N67
G496S	23048G>A	23048	GGT - 0
		GGT>AGT	AGT - 150
Q498R	23055A>G	23054	CAA - 1
		CAA>CGA	CGA - 144
N501Y	23063A>T	23063	AAT - 0
		AAT>TAT	TAT - 209
Y505H	23075T>C	23075	TAC - 1
		TAC>CAC	CAC - 261
T547K	23202C>A	23201	ACA - 0
		ACA>AAA	AAA - 777
D614G	23403A>G	23402	GAT - 1
		GAT>GGT	GGT - 1803
H655Y	23525C>T	23525	CAT - 3
		CAT>TAT	TAT - 1639
N679K	23599T>G	23597	AAT - 1
		AAT>AAG	AAG - 682
P681H	23604C>A	23603	CCT - 0
		CCT>CAT	CAT - 535
Q954H	24424A>T	24422	CAA - 1
		CAA>CAT	CAT - 753
N969K	24469T>A	24467	AAT - 0
		AAT>AAA	AAA - 1692
L981F	24503C>T	24503	CTT - 0
		CTT>TTT	TTT - 1797

413 **Extended Data Table 1: Codon frequency table**

414 This table shows the amino acid change, the nucleotide position of the genome, codon change and
415 the frequency of the codon on the assembled genome.

416 *Only deletions or insertion where the adjacent codon was preserved were counted; WT - Wild
417 Type, i.e reads without the insertion.

418

Extended Data Table 2

	All	Vaccinated only	Infected and vaccinated
Number of Participants	19	6	13
Age (years)	52 (39-67)	54 (36-71)	51 (45-63)
Days post-vaccination	26 (14-33)	14.5 (8.5-37.5)	28 (18-32)
Days post-infection			379 (127-468)
Days post-infection to vaccination			353 (114-444)
Date range of symptom onset			Jun 2020 – Jul 2021
Male sex	7	2	5

419 **Extended Data Table 2: Summary table of participants**

420 All values are median (IQR) and inclusive of all samples used (early and late timepoints for 2
421 participants).

422

ACCELERATED ARTICLE PREVIEW

Extended Data Table 3

Sample	Participant	Age	Sex	Days post 2 nd vaccination dose	Days diagnostic swab to sample	Date symptom onset or diagnostic test	Infecting virus*	FRNT ₅₀ D614G	FRNT ₅₀ Omicron
1	1	60-69	F	10	-	-	-	196	10.8
2	2	70-79	M	10	-	-	-	463	26.1
3	2	70-79	M	45	-	-	-	205	14.6
4	3	30-39	M	14	-	-	-	485	31.1
5	4	70-79	F	10	-	-	-	199	15.4
6	4	70-79	F	48	-	-	-	76.8	1.0
7	5	30-39	F	10	-	-	-	1102	51.9
8	6	30-39	F	33	-	-	-	151	4.6
9	7	40-49	F	14	458	Jul-2020	Ancestral	10447	681
10	8	60-69	F	63	468	Jul-2020	Ancestral	7468	414
11	9	20-29	F	31	487	Aug-2020	Ancestral	2153	190
12	10	20-29	M	37	493	Jul-2020	Ancestral	2697	121
13	11	60-69	F	28	378	Jul-2020	Ancestral	54823	892
14	12	60-69	M	26	379	Jul-2020	Ancestral	47023	1550
15	13	40-49	F	32	479	Aug-2020	Ancestral	13517	955
16	14	50-59	M	30	370	Sep-2020	Ancestral	11590	681
17	15	40-49	F	22	456**	Jun-2020**	Ancestral/Delta	664	5.0
18	16	40-49	M	18	83	Jul-2021***	Delta	10511	749
19	17	70-79	M	37	8	Jul-2021	Delta	3074	138
20	18	50-59	F	13	127	Jul-2021***	Delta	2205	385
21	19	60-69	F	14	103	Jul-2021	Delta	7160	174

423 **Extended Data Table 3: Participant information per sample**

424 *Determined by infection wave in South Africa. First infection wave (April-October 2020) consisted
425 of ancestral strains with the D614G mutation. Third infection wave (April-October 2021) was
426 dominated by the Delta variant. **Participant reinfected during Delta infection wave, sample is
427 taken 3 months post-recovery of Delta infection. Asymptomatic during reinfection.
428 ***Asymptomatic.

ACCELERATED ARTICLE PREVIEW

429 Consortia

430 **Network for Genomic Surveillance in South Africa (NGS-SA)**

431 Mary-Ann Davies¹⁷, Marvin Hsiao¹⁸, Darren Martin^{12,19}, Koleka Mlisana^{20,21}, Constantinos Kurt
432 Wibmer⁴, Carolyn Williamson^{4,12,22} & Denis York²³.

433 ¹⁷Center for Infectious Disease Epidemiology and Research, School of Public Health and Family
434 Medicine, University of Cape Town, Cape Town, South Africa. ¹⁸University of Cape Town/Groote
435 Schuur Complex of the National Health Laboratory Service (N HLS), University of Cape Town, Cape
436 Town, South Africa. ¹⁹Division of Computational Biology, Department of Integrative Biomedical
437 Sciences, University of Cape Town, Cape Town, South Africa. ²⁰Medical Microbiology Department,
438 University of KwaZulu-Natal, Durban, South Africa. ²¹National Health Laboratory Services (N HLS),
439 Durban, South Africa. ²²Wellcome Centre for Infectious Diseases Research in Africa, University of
440 Cape Town, Cape Town, South Africa. ²³Molecular Diagnostics Services, Durban, South Africa.
441

442 **COMMIT-KZN Team**

443 Rohen Harrichandparsad²⁴, Kobus Herbst^{1,25}, Prakash Jeena²⁶, Thandeka Khoza¹, Henrik Kløverpris^{1,27},
444 Alasdair Leslie^{1,11}, Rajhmun Madansein²⁸, Nombulelo Magula²⁹, Nithendra Manickchund¹³,
445 Mohlopheni Marakalala^{1,11}, Matilda Mazibuko¹, Mosa Moshabela³⁰, Ntombifuthi Mthabela¹, Kogie
446 Naidoo⁸, Zaza Ndhlovu^{1,31}, Thumbai Ndung'u^{1,16,31,32}, Nokuthula Ngcobo¹, Kennedy Nyamande³³, Vinod
447 Patel³⁴, Theresa Smit¹, Adrie Steyn^{1,35} & Emily Wong^{1,35}.

448 ²⁴Department of Neurosurgery, University of KwaZulu-Natal, Durban, South Africa. ²⁵South African
449 Population Research Infrastructure Network, Durban, South Africa. ²⁶Department of Paediatrics and
450 Child Health, University of KwaZulu-Natal, Durban, South Africa. ²⁷Department of Immunology and
451 Microbiology, University of Copenhagen, Copenhagen, Denmark. ²⁸Department of Cardiothoracic
452 Surgery, University of KwaZulu-Natal, Durban, South Africa. ²⁹Department of Medicine, King Edward
453 VIII Hospital and University of KwaZulu Natal, Durban, South Africa. ³⁰College of Health Sciences,
454 University of KwaZulu-Natal, Durban, South Africa. ³¹Ragon Institute of MGH, MIT and Harvard,
455 Boston, USA. ³²HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University
456 of KwaZulu-Natal, Durban, South Africa. ³³Department of Pulmonology and Critical Care, University
457 of KwaZulu-Natal, Durban, South Africa. ³⁴Department of Neurology, University of KwaZulu-Natal,
458 Durban, South Africa. ³⁵Division of Infectious Diseases, University of Alabama at Birmingham, USA.
459

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our [Editorial Policies](#) and the [Editorial Policy Checklist](#).

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F , t , r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen's d , Pearson's r), indicating how they were calculated

Our web collection on [statistics for biologists](#) contains articles on many of the points above.

Software and code

Policy information about [availability of computer code](#)

Data collection

Data analysis

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio [guidelines for submitting code & software](#) for further information.

Data

Policy information about [availability of data](#)

All manuscripts must include a [data availability statement](#). This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our [policy](#)

Sequence was deposited in GISAID, accession: EPI_ISL_7358094. All data are contained in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	Sample size was not pre-determined. We used all the samples we had available which met the inclusion/exclusion criteria.
Data exclusions	We excluded samples from PfizerBNT162b2 vaccinated participants who were previously infected with the Beta variant since we wanted to compare to the Omicron to Beta virus neutralization. We excluded samples positive for SARS-CoV-2 nucleocapsid (ie previously infected) where we could not determine the infecting variant/strain by a time of infection.
Replication	Repeated in an independent experiment on a different day. Geometric mean of replicate samples was used.
Randomization	Groups were determined based on whether
Blinding	No blinding.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems		Methods	
n/a	Involved in the study	n/a	Involved in the study
<input type="checkbox"/>	<input checked="" type="checkbox"/> Antibodies	<input type="checkbox"/>	<input checked="" type="checkbox"/> ChIP-seq
<input type="checkbox"/>	<input checked="" type="checkbox"/> Eukaryotic cell lines	<input type="checkbox"/>	<input checked="" type="checkbox"/> Flow cytometry
<input checked="" type="checkbox"/>	<input type="checkbox"/> Palaeontology and archaeology	<input type="checkbox"/>	<input checked="" type="checkbox"/> MRI-based neuroimaging
<input checked="" type="checkbox"/>	<input type="checkbox"/> Animals and other organisms		
<input type="checkbox"/>	<input checked="" type="checkbox"/> Human research participants		
<input checked="" type="checkbox"/>	<input type="checkbox"/> Clinical data		
<input checked="" type="checkbox"/>	<input type="checkbox"/> Dual use research of concern		

Antibodies

Antibodies used	Foci were stained with a rabbit anti-spike monoclonal antibody (BS-R2B12, GenScript A02058) at 0.5 µg/mL. Secondary goat anti-rabbit horseradish peroxidase (Abcam ab205718) antibody was added at 1 µg/mL
Validation	Information sheet for A02058 at https://www.genscript.com/antibody/A02058-MonoRab_SARS_CoV_2_Spike_S1_Antibody_BS_R2B12_mAb_Rabbit.html . Information sheet for ab205718: https://www.abcam.com/goat-rabbit-igg-hl-hrp-ab205718.html

Eukaryotic cell lines

Policy information about cell lines	
Cell line source(s)	Vero E6 cells (ATCC CRL-1586) obtained from Cellonex in South Africa. The H1299-E3 cell line was derived from H1299 (CRL-5803) as described in (2) and Figure S1. H1299 cells were a gift from M. Oren, Weizmann Institute of Science.
Authentication	Cell lines have not been authenticated.
Mycoplasma contamination	The cell lines have been tested for mycoplasma contamination and are mycoplasma negative.
Commonly misidentified lines (See ICLAC register)	None.

Human research participants

Policy information about [studies involving human research participants](#)

Population characteristics

Participant characteristics are summarized in Table S1 and listed per participant in Table S2.

Recruitment

Blood samples were obtained from hospitalized adults with PCR-confirmed SARS-CoV-2 infection and/or vaccinated individuals who were enrolled in a prospective cohort study approved by the Biomedical Research Ethics Committee at the University of KwaZulu-Natal.

Ethics oversight

Study approved by the Biomedical Research Ethics Committee at the University of KwaZulu-Natal (reference BREC/00001275/2020). Use of residual swab sample was approved by the University of the Witwatersrand Human Research Ethics Committee (HREC) (ref. M210752).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:

- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Plasma was separated from EDTA-anticoagulated blood by centrifugation at 500 rcf for 10 min and stored at -80°C. Aliquots of plasma samples were heat-inactivated at 56°C for 30 min and clarified by centrifugation at 10,000 rcf for 5 min.

Instrument

Plates were imaged in an ImmunoSpot Ultra-V S6-02-6140 Analyzer ELISPOT instrument with BioSpot Professional built-in image analysis (C.T.L.).

Software

BioSpot Professional built-in image analysis (C.T.L.).

Cell population abundance

H1299-E3 clone was previously generated and described. Abundance of infected cells with lentiviral infection was 30%.

Gating strategy

H1299-E3 clone was previously generated and described. Gating was based on FSC/SSC for live cells, then uninfected cells were used to determine mCherry positive gating.

- Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.