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Energy infrastructure

Solar-panel detection

goes global

Lynn H. Kaack

Aninventory of the world’s solar-panel installations has been
produced with the help of machine learning, revealing many
more than had previously beenrecorded. The results will inform
efforts to meet global targets for solar-energy use. See p.604
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Many governments do not maintain a central
database listing the size and locations of
their country’s photovoltaic systems —
installations of solar cells that generate
electricity. Remote-sensing approaches
using machine-learning techniques have the
potential to collect these data by detecting
suchfacilitiesin satellite images. On page 604,
Kruitwagen et al.! show how machine learn-
ing can be used to mine imagery of the entire
globe to produce aninventory of commercial-,
industrial- and utility-scale solar installations.
The authors locate more than 68,000 such
facilities, many of which were not onrecord.
Solar panels come in various sizes and can
beplaced ontheground, ontop of structures
or even on water. They can therefore be used
asadistributed energy resource — that is, at
relatively small scales, close to where elec-
tricity is needed. This also makes it difficult
to keep track of photovoltaic installations.
However, researchers, government agencies,
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grid operators and other stakeholders need
detailed information about these distributed
resources if they are to plan land use, moni-
tor the adoption of photovoltaic technology
and integrate it into the power grid. Policy-
makers also need to consider the equity of
solar energy: are some people more able to
take advantage of its benefits than others??

I often use photovoltaic installations as an
example toshow my students how surprisingly
poor data availability is for some topics that
are central to climate policy. In the United
States, for example, the most comprehensive
database of photovoltaicinstallations® covers
onlyaround 80% of installations. Collection of
these datais expensive and oftenimpeded by
regulatory orinstitutional barriers — whichis
why approachesbased on remote sensing and
machinelearning offer a practical alternative.

Machine-learningapproachesforidentifying
photovoltaic installations in high-resolution
aerial and satellite imagery have grown at
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an impressive speed. The method was first
proposed*®in 2016 — for example, as a way
of finding residential installations in an
area of 135 square kilometres across Fresno,
California*. Only two years later, machine
learning was used to scan satellite images of
the entire continental United States for solar
arrays’, providing the first complete picture
of residential installations in that country.
Around the same time, utility-scale photovol-
taicinstallations were also mapped for Japan®®
and China’. Kruitwagen et al. now report
another leap for the technique, with their anal-
ysisof 72.1million square kilometres of Earth’s
surface to detect commercial-, industrial-and
utility-scale photovoltaicinstallations around
the world.

Kruitwagen and colleagues’ study is a mile-
stone because it shows that machine-learning
approaches can be used to catalogue global
energy infrastructure. It also highlights the
considerable challenges involved in doing
so. Forinstance, the global scope comes with
differences in data quality and availability,
and animmensely diverse set of imagery that
demandsaconsiderable quantity of manually
annotated datato train the machine-learning
system. At that scale, huge computational
resources are also needed to process the vast
number of images. The authors tackled these
challenges with creativity and withtheample
patiencerequired for the hand-labelling. They
used two different sources of satelliteimagery,
and set up a process involving several ‘deep
learning’ models to extract location, size and
installation dates (Fig. 1).

The authors then manually verified that
the tens of thousands of candidates identi-
fied by the machine-learning system were
indeed photovoltaicinstallations, filtering out
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Figure 1| Mining satellite images to detect solar-panelinstallations. a, Kruitwagen et al.' have trained a machine-learning system to detect commercial-, industrial-
and utility-scale solar-panelinstallations, by analysing satellite images such as this one. b, The machine-learning system generates a map that predicts the location and
size of solar-panel installations (bright region). ¢, Further processing of the prediction map to eliminate false candidates produces a refined map as output.
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chicken coops, greenhouses and so on. Such
manual verification can impair reproducibil-
ity, and is therefore unusual in conventional
applications of machine learning. However, it
mightbe necessary when machinelearning is
being used to provide data for policymaking.
Theresearchers have made available the data
sets that they used to validate and test their
method, as well as the resulting identifica-
tions. This will be tremendously valuable for
further researchin this area.

Kruitwagen and colleagues’ results provide
detailed information about many more solar
installations than were previously described.
Onthebasis of their detections, they also esti-
mate the total global electricity-generation
capacity of installed facilities, which is very
close to the aggregate value provided by the
International Energy Agency. Demonstrating
the value of their granular facility-level data,
they show that non-residential photovoltaic
installations were most often developed on
agriculturalland, indicating a possible trade-
off between renewable-energy development
and food supply.

So what are the next directions for this
field, now that Kruitwagen et al. have taken
it to the global scale? One focus could be to
increase the performance of this approach
when identifying installations in different
contexts. For example, landscapes — and the
photovoltaicinstallations in them — can look
very different from space in different geo-
graphical contexts, and soamodel trained on
data from one region might not make good
predictions for another region. Ensuring that
the machine-learning system does not system-
atically underperformfor certain regionswasa
challenge for Kruitwagen and colleagues, and
constitutes a problem to be addressed in the
future. The same holds for other factors that
determine what solar panels and their envi-
ronments look like, such as types of building,
technological characteristics, and the differ-
encesbetweenurbanand ruralenvironments.
This might become even more challenging
when the goalis also to detect smaller-scale
(residential) solar installations that were not
covered inthe authors’ study.

Another task willbe to measure the costsand
benefits of the machine-learning approach.
Initial concerns that machine learning would
require too much effort and would result in
low accuracy — and therefore would not add
valueto conventional approaches for collecting
these data—have now been mitigated by initial
successes. That said, high-resolution satellite
imagesareexpensive,andsoisthelargeamount
of computational power needed to train and
deploy the model (for example, 71 megawatt
hours of energy were used for Kruitwagen and
co-workers’ study). The costs and benefits to
society of such approaches should therefore
be evaluated regularly,and compared with the
alternative option of collecting data directly.
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In this regard, Kruitwagen and colleagues’
study is a superb example of the value of
machine-learning approaches —researchers,
policymakers, international organizations and
moreacross the world need access to trustwor-
thy, regularly updated global data sets such
as these. So who should bear the costs of this
type of work and ensure that it is maintained
and accessible torelevant stakeholdersin the
long run?

Research laboratories in universities have
played a large part in developing similar
machine-learning approaches focused on
questions of societal relevance, for example
to address climate change'™. Universities and
researchinstitutions are ideally suited to con-
ductsuchwork, butareunlikely to be theright
kind of stakeholder to maintain and update
large-scale databases over time. Instead,
national and international agencies, not-
for-profit organizations or publicly funded
research entities could have the capacity, sus-
tained funding and public-interest mandate
tomaintain theinfrastructure needed toturn
these datainto a public good.

Ultimately, analysis of photovoltaicinstalla-
tionsat large geographical scales is needed for

Neuroscience

real-worldimpact. Kruitwagen et al. show that
machine learning offers an attractive option
for gathering data at such scales when infor-
mationis not collected through other means.
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A brainsignal that makes
mice hungrier for reward

Lola Welsch & Brigitte L. Kieffer

Release of opioid peptide in the brain leads food-deprived
mice to eat more sugar than do mice that are well fed. This
opioid signalling mechanism fine-tunes the reward value
of food according to the animal’s state. See p.646

Eating even a simple snack is much more
pleasurable when you are hungry than when
you are already well fed. During fasting, com-
plex brain mechanisms evaluate an animal’s
internal state, as well as the caloric and
pleasurable (hedonic) values of the food, to
ultimately drive eating. In the brain, several
molecular signalling systems act together
in this process, including the opioid system,
whichis composed of several opioid peptides
and their receptors. The latter are the targets
of opioid drugs such as morphine and heroin
that have strong pain-reducing and notori-
ously addictive properties?. The brain’s
opioid system contributes to the hedonic
value of natural rewards such as food, sex and
socialinteractions? but the exact opioid pep-
tide signal and receptor involved, and where
theyinteract, have been challenging to deter-
mine. On page 646, Castro et al.* identify an
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opioid-system-tuned brain circuit thatdrives
hungry mice toeat more of asugar reward than
do well-fed mice.

Thesstudy by Castro and colleagues showed
that mice that were deprived of food for
24 hours ate, on average, about three times
as many sugar pellets as did mice that had
had free access to food. The team found
that, in hungry mice, opioid peptides called
enkephalins are produced in a part of the
brainthatis central toreward processing, the
nucleus accumbens (NAC)®, where they bind
toand activatelocal p-opioid receptors. These
receptorsare present at the terminals (endings
of projections) of incoming neurons that orig-
inate from the dorsal raphe nucleus (DRN),
which is known as the main centre for mood
control. The enkephalin-receptor interaction
inthe NAC blocks the activity of these incom-
ing neurons, interrupting a communication



