
Many governments do not maintain a central 
database listing the size and locations of 
their country’s photovoltaic systems — 
installations of solar cells that generate 
electricity. Remote-sensing approaches 
using machine-learning techniques have the 
potential to collect these data by detecting 
such facilities in satellite images. On page 604, 
Kruitwagen et al.1 show how machine learn-
ing can be used to mine imagery of the entire 
globe to produce an inventory of commercial-, 
industrial- and utility-scale solar installations. 
The authors locate more than 68,000 such 
facilities, many of which were not on record. 

Solar panels come in various sizes and can 
be placed on the ground, on top of structures 
or even on water. They can therefore be used 
as a distributed energy resource — that is, at 
relatively small scales, close to where elec-
tricity is needed. This also makes it difficult 
to keep track of photovoltaic installations. 
However, researchers, government agencies, 

grid operators and other stakeholders need 
detailed information about these distributed 
resources if they are to plan land use, moni-
tor the adoption of photovoltaic technology 
and integrate it into the power grid. Policy
makers also need to consider the equity of 
solar energy: are some people more able to 
take advantage of its benefits than others2?

I often use photovoltaic installations as an 
example to show my students how surprisingly 
poor data availability is for some topics that 
are central to climate policy. In the United 
States, for example, the most comprehensive 
database of photovoltaic installations3 covers 
only around 80% of installations. Collection of 
these data is expensive and often impeded by 
regulatory or institutional barriers — which is 
why approaches based on remote sensing and 
machine learning offer a practical alternative. 

Machine-learning approaches for identifying 
photovoltaic installations in high-resolution 
aerial and satellite imagery have grown at 

an impressive speed. The method was first 
proposed4–6 in 2016 — for example, as a way 
of finding residential installations in an 
area of 135 square kilometres across Fresno, 
California4. Only two years later, machine 
learning was used to scan satellite images of 
the entire continental United States for solar 
arrays7, providing the first complete picture 
of residential installations in that country. 
Around the same time, utility-scale photovol-
taic installations were also mapped for Japan6,8 
and China9. Kruitwagen et  al. now report 
another leap for the technique, with their anal-
ysis of 72.1 million square kilometres of Earth’s 
surface to detect commercial-, industrial- and 
utility-scale photovoltaic installations around 
the world. 

Kruitwagen and colleagues’ study is a mile-
stone because it shows that machine-learning 
approaches can be used to catalogue global 
energy infrastructure. It also highlights the 
considerable challenges involved in doing 
so. For instance, the global scope comes with 
differences in data quality and availability, 
and an immensely diverse set of imagery that 
demands a considerable quantity of manually 
annotated data to train the machine-learning 
system. At that scale, huge computational 
resources are also needed to process the vast 
number of images. The authors tackled these 
challenges with creativity and with the ample 
patience required for the hand-labelling. They 
used two different sources of satellite imagery, 
and set up a process involving several ‘deep 
learning’ models to extract location, size and 
installation dates (Fig. 1). 

The authors then manually verified that 
the tens of thousands of candidates identi-
fied by the machine-learning system were 
indeed photovoltaic installations, filtering out 
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An inventory of the world’s solar-panel installations has been 
produced with the help of machine learning, revealing many 
more than had previously been recorded. The results will inform 
efforts to meet global targets for solar-energy use. See p.604 

Satellite image Prediction mapa b Outputc

Figure 1 | Mining satellite images to detect solar-panel installations. a, Kruitwagen et al.1 have trained a machine-learning system to detect commercial-, industrial- 
and utility-scale solar-panel installations, by analysing satellite images such as this one. b, The machine-learning system generates a map that predicts the location and 
size of solar-panel installations (bright region). c, Further processing of the prediction map to eliminate false candidates produces a refined map as output.
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chicken coops, greenhouses and so on. Such 
manual verification can impair reproducibil-
ity, and is therefore unusual in conventional 
applications of machine learning. However, it 
might be necessary when machine learning is 
being used to provide data for policymaking. 
The researchers have made available the data 
sets that they used to validate and test their 
method, as well as the resulting identifica-
tions. This will be tremendously valuable for 
further research in this area.

Kruitwagen and colleagues’ results provide 
detailed information about many more solar 
installations than were previously described. 
On the basis of their detections, they also esti-
mate the total global electricity-generation 
capacity of installed facilities, which is very 
close to the aggregate value provided by the 
International Energy Agency. Demonstrating 
the value of their granular facility-level data, 
they show that non-residential photovoltaic 
installations were most often developed on 
agricultural land, indicating a possible trade-
off between renewable-energy development 
and food supply.

So what are the next directions for this 
field, now that Kruitwagen et al. have taken 
it to the global scale? One focus could be to 
increase the performance of this approach 
when identifying installations in different 
contexts. For example, landscapes — and the 
photovoltaic installations in them — can look 
very different from space in different geo-
graphical contexts, and so a model trained on 
data from one region might not make good 
predictions for another region. Ensuring that 
the machine-learning system does not system-
atically underperform for certain regions was a 
challenge for Kruitwagen and colleagues, and 
constitutes a problem to be addressed in the 
future. The same holds for other factors that 
determine what solar panels and their envi-
ronments look like, such as types of building, 
technological characteristics, and the differ-
ences between urban and rural environments. 
This might become even more challenging 
when the goal is also to detect smaller-scale 
(residential) solar installations that were not 
covered in the authors’ study.

Another task will be to measure the costs and 
benefits of the machine-learning approach. 
Initial concerns that machine learning would 
require too much effort and would result in 
low accuracy — and therefore would not add 
value to conventional approaches for collecting 
these data — have now been mitigated by initial 
successes. That said, high-resolution satellite 
images are expensive, and so is the large amount 
of computational power needed to train and 
deploy the model (for example, 71 megawatt 
hours of energy were used for Kruitwagen and 
co-workers’ study). The costs and benefits to 
society of such approaches should therefore 
be evaluated regularly, and compared with the 
alternative option of collecting data directly.

In this regard, Kruitwagen and colleagues’ 
study is a superb example of the value of 
machine-learning approaches — researchers, 
policymakers, international organizations and 
more across the world need access to trustwor-
thy, regularly updated global data sets such 
as these. So who should bear the costs of this 
type of work and ensure that it is maintained 
and accessible to relevant stakeholders in the 
long run? 

Research laboratories in universities have 
played a large part in developing similar 
machine-learning approaches focused on 
questions of societal relevance, for example 
to address climate change10. Universities and 
research institutions are ideally suited to con-
duct such work, but are unlikely to be the right 
kind of stakeholder to maintain and update 
large-scale databases over time. Instead, 
national and international agencies, not-
for-profit organizations or publicly funded 
research entities could have the capacity, sus-
tained funding and public-interest mandate 
to maintain the infrastructure needed to turn 
these data into a public good. 

Ultimately, analysis of photovoltaic installa-
tions at large geographical scales is needed for 

real-world impact. Kruitwagen et al. show that 
machine learning offers an attractive option 
for gathering data at such scales when infor-
mation is not collected through other means.
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Eating even a simple snack is much more 
pleasurable when you are hungry than when 
you are already well fed. During fasting, com-
plex brain mechanisms evaluate an animal’s 
internal state, as well as the caloric and 
pleasurable (hedonic) values of the food, to 
ultimately drive eating. In the brain, several 
molecular signalling systems act together 
in this process, including the opioid system, 
which is composed of several opioid peptides 
and their receptors. The latter are the targets 
of opioid drugs such as morphine and heroin 
that have strong pain-reducing and notori
ously addictive properties1,2. The brain’s 
opioid system contributes to the hedonic 
value of natural rewards such as food, sex and 
social interactions3, but the exact opioid pep-
tide signal and receptor involved, and where 
they interact, have been challenging to deter-
mine. On page 646, Castro et al.4 identify an 

opioid-system-tuned brain circuit that drives 
hungry mice to eat more of a sugar reward than 
do well-fed mice.

The study by Castro and colleagues showed 
that mice that were deprived of food for 
24 hours ate, on average, about three times 
as many sugar pellets as did mice that had 
had free access to food. The team found 
that, in hungry mice, opioid peptides called 
enkephalins are produced in a part of the 
brain that is central to reward processing, the 
nucleus accumbens (NAC)5, where they bind 
to and activate local μ-opioid receptors. These 
receptors are present at the terminals (endings 
of projections) of incoming neurons that orig-
inate from the dorsal raphe nucleus (DRN), 
which is known as the main centre for mood 
control. The enkephalin–receptor interaction 
in the NAC blocks the activity of these incom-
ing neurons, interrupting a communication 
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A brain signal that makes 
mice hungrier for reward
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Release of opioid peptide in the brain leads food-deprived 
mice to eat more sugar than do mice that are well fed. This 
opioid signalling mechanism fine-tunes the reward value 
of food according to the animal’s state. See p.646
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