
Most proteins self-assemble into specific 3D 
structures that, together with other biolog-
ical molecules, determine the function and 
behaviour of cells. Over the past five decades, 
biologists have experimentally determined 
the structures of more than 180,000 proteins 
and deposited them in the Protein Data Bank1, 
a freely available online resource. Despite this 
painstaking effort, the structures of hundreds 
of millions of proteins remain unknown, 
including more than two-thirds of those in 
the human proteome — the full set of proteins 
produced by our genome. 

In two papers in this issue, scientists at 
DeepMind, Google’s London-based sister 
company, describe a machine-learning 
method, AlphaFold2, that predicts pro-
tein structures with near-experimental 
accuracy2, and report its application to 
the human proteome3. DeepMind has also 
announced that it has applied AlphaFold2 to 
the proteomes of 20 model organisms (see 
go.nature.com/2w6zhus). AlphaFold2 is free 
for academics to use and, in collaboration 
with the European Bioinformatics Institute 
in Hinxton, UK, DeepMind will make the pre-
dicted structures of almost all known proteins 
freely available to all. 

AlphaFold2 — as the name implies — is the 
second iteration of a system that DeepMind 
introduced three years ago at the Thirteenth 
Critical Assessment of Structure Prediction 
(CASP13) competition. The first version of 
AlphaFold was technically impressive4, and 
outperformed the other CASP13 entrants 
at the task of predicting protein structures 
from amino-acid sequences. However, it had a 
median accuracy of 6.6 ångströms for the most 
difficult set of proteins tested — that is, for the 
middle-ranked protein in the set, the atoms 
in the proposed structures were, on average, 

6.6 Å away from their actual positions. This 
is much less accurate than experimental 
methods. Moreover, the original AlphaFold 
arguably represented only an incremental 
improvement over competing algorithms, in 
both design and performance.

AlphaFold2 fundamentally changes this. Its 
median accuracy at CASP14, which was held 
in 2020, was 1.5 Å — comparable to the width 
of an atom and approaching the accuracy of 
experimental methods. Moreover, its design 
has few parallels with existing algorithms.

The prediction of protein structures is 
difficult for many reasons: the number of 
plausible shapes for any given protein is huge, 
but an algorithm must pick just one; the num-
ber of known structures is (relatively) small, 
limiting the data available for training struc-
ture-predicting systems; the rules underlying 
protein biophysics are only approximately 
known, and are expensive to simulate; and 
the forces that determine a protein’s struc-
ture result not only from local interactions 
between nearby chemical groups in the pro-
tein molecule, but also from long-range inter-
actions spanning the whole protein. Jumper 
et al.2 (page 583) report a multitude of ideas 
to address these challenges in their design of 
AlphaFold2.

Central to this design is a machine-learning 
framework — known as an artificial neural 
network — that considers both local and 
long-range interactions in protein molecules. 
This differs from previous algorithms, which 
commonly considered only local interactions 
to reduce the computational burden of struc-
ture prediction. AlphaFold2 does not try to 
capture long-range interactions through 
computational brute force, which would be 
hopeless even with the resources available 
at Google. Instead, the authors introduced 
computational operations that efficiently 
capture long-range interactions on the basis 
of fundamental aspects of protein geometry. 
For example, the operations account for the 
fact that the coordinates of any three atoms in 
a protein must satisfy the triangle inequality 
rule (in other words, the sum of the lengths 
of any two sides of the triangle defined by the 
coordinates must be greater than or equal to 
the length of the remaining side).

AlphaFold2 applies these operations repeat-
edly (about 200 times) to gradually refine a 
model of a protein into its final 3D structure. 
Such iterative refinement, used millions 
of times, rather than hundreds, is a central 
component of physics-based approaches to 
protein-structure prediction5. But it is rarely 
used in machine-learning approaches — which 
instead predict structures by recognizing pat-
terns of mutation in evolutionarily related 
proteins to detect co-evolving, and therefore 
spatially proximal, amino-acid residues6. 
AlphaFold2 breaks the mould by combining 
these two strategies. Crucially, it does not 
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The full might of a world-leading artificial-intelligence 
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Figure 1 | The confidence of protein-structure 
predictions by AlphaFold2. Jumper et al.2 report 
a machine-learning system, called AlphaFold2, 
that predicts the 3D structures of proteins from 
amino-acid sequences. Tunyasuvunakool et al.3 
used the same system to predict the structures of 
all human proteins that self-assemble into specific 
3D structures. AlphaFold2 produces a confidence 
metric called the predicted local distance difference 
test (pLDDT) to estimate how well the predicted 
position of each amino-acid residue agrees 
with experimentally determined positions, on 
a scale of 1 to 100. The charts show the fractions 
of residues corresponding to different ranges 
of pLDDT for: a, residues that were previously 
resolved in structure-determination experiments 
(3,440,359 residues); b, residues that could not 
be resolved in experiments (589,079 residues); 
c, all of the residues in human proteins 
(10,537,122 residues). (Data from ref. 3.)
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impose known rules of protein biophysics or 
try to mimic the physical process of protein 
folding, as has previously been attempted7,8. 
Instead, it performs purely geometric refine-
ments learnt from its repeated attempts to 
predict protein structures. In this sense, it 
exemplifies the learning-driven revolution 
that has swept the field of protein modelling6,9.

In a companion paper, Tunyasuvunakool 
et al.3 (page 590) report the use of AlphaFold2 
to predict the structures of almost all 
human proteins that independently acquire 
well-defined 3D shapes, for a total of 
23,391 proteins. Predictions at this scale were 
previously possible, but three features of the 
new system provide a big leap forward.

First, the accuracy of the predictions 
is sufficiently high to generate biological 
insights and hypotheses that can be tested 
experimentally. Second, a calibrated self-as-
sessment of each prediction provides a 
reliable estimate of correctness at the level 
of individual amino-acid residues (Fig. 1), 
enabling biologists to make inferences 
about confidently predicted regions. Third, 
AlphaFold2 is applicable to whole proteins, 
including large ones that have multiple, inde-
pendently self-assembling units — a common 
feature of mammalian proteins. The resulting 
resource ‘confidently’ predicts nearly 60% 
of all human-protein regions; most of the 
remaining regions might be unable to acquire 
well-defined structures, or be able to do so 
only in the presence of other biomolecules.

AlphaFold2 has already helped structural 
biologists to solve crystallographic protein 
structures10 and refine ones derived from 
cryo-electron microscopy experiments. It pro-
vides biophysicists studying protein motion 
with starting (static) structures, and those 
studying protein interactions with hypothe-
ses about how protein surfaces bind to each 
other. AlphaFold2 also presents opportuni-
ties to formulate new algorithms for bioinfor-
matics based on protein structures, and might 
help systems biologists to understand the 
behaviour of cellular pathways and molecular 
machines on the basis of the structures that 
comprise them. And the study of evolution, 
which has long relied on genetic sequences, 
can now more readily be formulated in terms 
of the onset of new classes of protein struc-
ture (folds) and their relationship to cellular 
function and organismal fitness.

It is tempting to compare the scale of this 
advance to that of the Human Genome Pro-
ject, but there are important differences. In 
contrast to the human genome sequence, 
the predicted structures have not been 
experimentally verified; it will take time for 
evidence of their correctness to emerge, so 
that scientists can gain confidence in the 
predictions. Of course, experimental meas-
urements can also be affected by ‘noise’, 
bias and incompleteness — 20 years passed 

On page 536, Cuni-Sanchez et al.1 report the 
assembly of a large database of tree invento-
ries for 226 mature montane-forest plots in  
12 African countries. The authors analyse the 
data to determine the amount of aboveground 
biomass and carbon stored in these highly 
diverse and threatened ecosystems. Their 
results suggest that African montane forests 
store more carbon than was previously 
thought, and the findings should help to guide 
efforts to conserve these ecosystems.  

Cuni-Sanchez and colleagues measured 
trunk diameters and heights of the trees in 
plots, and identified the botanical species 

to deduce wood density — an approach that 
constitutes the gold standard for estimating 
the biomass, and thus the amount of carbon, 
contained per unit of forest area. This method 
involves the use of general statistical equations 
for describing tree form, called allometric 
models, and considers only the aboveground 
parts of trees. It therefore disregards several 
other pools of carbon, notably in the roots 
and soil. The overall approach might seem 
crude, but recognizing and measuring the 
many hundreds of tree species found on steep, 
cloud-shrouded slopes (Fig. 1), let alone the 
underground carbon, without visiting the sites, 
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The inaccessibility of African montane forests has hindered 
efforts to quantify the carbon stored by these ecosystems. 
A remarkable survey fills this knowledge gap, and highlights 
the need to preserve such forests. See p.536

between the publication of the first draft of the 
human genome and the complete sequence11 
— and modern structure-determination 
techniques routinely involve some compu-
tational inference. As predictions improve, 
disagreements between protein models and 
experiments could become difficult to resolve, 
a situation familiar to physicists12 but largely 
unprecedented in biology.

Disordered protein regions, which do not 
have well-defined shapes but often encode 
functionally crucial parts of proteins, pres-
ent an ongoing and fundamental challenge to 
AlphaFold2 and, therefore, to our understand-
ing of protein structure. Future methods must 
take this disorder into account and begin to 
reflect the flexibility inherent in most proteins.

Other differences between the Human 
Genome Project and the present advance are 
in AlphaFold2’s favour. Structure predictions 
are (relatively) cheap and will soon be available 
for all proteins, whereas genetic-sequencing 
technology took years to deploy and mature. 
Computational methods evolve rapidly, and 
it might therefore soon be possible to predict 
the structures of multi-protein complexes, 
alternative conformations of a protein (for 
proteins that adopt them) and the structures 
of designed proteins with a level of accu-
racy similar to that currently achieved by 
AlphaFold2. Finally, protein structures provide 
immediate biological insights, because they 
fit within established conceptual frameworks 

that relate a protein’s structure to its function 
— unlike genetic sequences, which were largely 
inscrutable at the dawn of the genomics era. 
The fruits of this revolution might thus be 
more swiftly reaped.
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