
This year marks ten years since the
launch of the IPython Notebook. The
open-source tool, now known as the
Jupyter Notebook, has become an
exceedingly popular piece of data-

science kit, with millions of notebooks depos-
ited to the GitHub code-sharing site.

Computational notebooks combine code,
results, text and images in a single document,
yielding what Stephen Wolfram, creator of the
Mathematica software package, has called a
“computational essay”. And whether written
using Jupyter, Mathematica, RStudio or any
other platform, researchers can use them for
iterative data exploration, communication,
teaching and more.

But computational notebooks can also be
confusing and foster poor coding practices.
And they are difficult to share, collaborate
on and reproduce. A 2019 study found that
just 24% of 863,878 publicly available Jupyter

notebooks on GitHub could be successfully
re-executed, and only 4% produced the same
results (J. F. Pimentel et al. in 2019 IEEE/ACM
16th International Conference on Mining
Software Repositories (MSR) 507–517; IEEE,
2019).

“Notebooks are messy,” says Anita Sarma,
a computer scientist at Oregon State Univer-
sity in Corvallis who studies human–computer
interaction. “You write stuff, you keep old
crusty code behind, and it’s hard to kind of fig-
ure out which cells to execute in which order,
because you were trying different things.”

But a growing suite of platforms and tools
aims to smooth these rough edges. Some make
notebooks ‘reactive’, so that code re-executes
whenever software variables change; others
focus on collaboration and version control.
But all provide researchers with innovative
ways to explore, document and share their
data with colleagues and the world.

For Sergei Pond, notebooks have provided
an outlet for documenting the genetics of
the pandemic. Pond, a computational biol-
ogist at Temple University in Philadelphia,
Pennsylvania, has created some three dozen
documents related to SARS-CoV-2, the virus
that causes COVID-19. “My default setting”, he
says, is to “write up an interactive notebook
and send it to my collaborators so they can
play with the data, [so] they can immediately
see what’s there.”

His notebook platform of choice is called
Observable. It’s based in San Francisco,
California, and was founded in 2019 by two
Google alumni: Mike Bostock, developer of
the D3 JavaScript library that powers many of
the interactive data visualizations on the web
today, and Melody Meckfessel. The company’s
web-based notebook system allows users to
create, share and reuse sophisticated, inter-
active visualizations written in JavaScript, the

REACTIVE, REPRODUCIBLE,
COLLABORATIVE: COMPUTATIONAL
NOTEBOOKS EVOLVE
A new breed of notebooks is taking data visualization
and collaborative functionality to the next level, with
spreadsheet simplicity. By Jeffrey M. Perkel

IL
LU

ST
R

A
T

IO
N

 B
Y

 T
H

E
P

R
O

JE
C

T
 T

W
IN

S

156  |  Nature  |  Vol 593  |  6 May 2021

Work / Technology & tools

©

2021

Springer

Nature

Limited.

All

rights

reserved. ©

2021

Springer

Nature

Limited.

All

rights

reserved.

programming language understood by web
browsers. According to Meckfessel, “hundreds
of thousands” of users do so every month.

Unlike Jupyter, which passes code to an
external ‘kernel’ that executes it, Observable
code runs in the browser itself. That makes the
platform fast and responsive, Bostock says. But
because JavaScript is not a typical data-science
language, researchers often use Observable
not for data processing but for visualization.

Pond, for instance, uses Observable to share
colourful maps, graphs, protein structures and
sequence alignments that represent data that
he generates in other software. Observable’s
modular structure means that other program-
mers can easily apply those visualizations to
their own data. But Pond’s notebooks also take
advantage of another key Observable feature:
reactivity.

Suppose you have a Jupyter notebook that
plots a line. In one code cell, you define the
slope and y-intercept; in the next, you draw
the graph. The notebook structure allows
coders to return to the earlier cell to change
the slope after the plot has been rendered. But
that change does not cause the figure to be
automatically redrawn; the user must manu-
ally re-execute the cell that plots it.

This workflow can lead to ‘state problems’,
in which a notebook’s output does not reflect
its code — as would happen, for instance, if
the user deletes the cell that defines a vari-
able after it has been executed. In 2018, Joel
Grus, then a software engineer at the Allen
Institute for Artificial Intelligence in Seattle,
Washington, highlighted this behaviour, and
the ensuing confusion, in a widely viewed talk
entitled “I don’t like notebooks”. But, “to a large
degree, having fully reactive notebooks elim-
inates that feature,” he says now.

Reactive notebooks are similar to spread-
sheets, Bostock explains. Just as Microsoft
Excel knows to recalculate a formula if the
underlying cells change, reactive notebooks
track how code cells relate to one another
to ensure that a notebook’s output always
reflects its variables.

Combined with visual widgets, such as sliders
and pull-down lists, such behaviour makes note-
books interactive, allowing readers to explore
how changing variables or assumptions can
affect results. Herb Susmann, a biostatistics
PhD student at the University of Massachusetts
Amherst, for instance, uses reactive documents
to explain statistical concepts. “It really helps
me get more of a visceral feel for how these
statistical things work,” he says. (That said,
reactivity isn’t always desirable, particularly if
cells take a long time to execute, or when data
sets are very large.)

React and collaborate
Other reactive notebook systems exist
for researchers who don’t use JavaScript.
Susmann, for instance, has built a reactive

notebook for R programmers, called Reactor.
And Fons van der Plas, a software engineer in
Berlin, created Pluto, a reactive notebook
platform for the programming language Julia.
Henri Drake, a graduate student of climate
physics at the Massachusetts Institute of
Technology in Cambridge, uses Pluto to
demonstrate concepts in climate science.
“Coding it up as an interactive Pluto notebook
makes it a way more engaging experience
for a first-time user,” Drake says, “and can
really help people understand the models
that I’m building.”

Fernando Pérez, a co-founder of Project
Jupyter at the University of California,
Berkeley, notes that Jupyter itself “is agnostic
on the topic of reactivity”. Most kernels so far
have been non-reactive, but they don’t have
to be: Richa Gadgil, a former Jupyter intern at
California Polytechnic State University in San
Luis Obispo, for instance, spent her internship
co-developing an experimental reactive kernel
for Python. “It was a test of the Jupyter archi-
tecture and the Jupyter architecture passed
that test,” says Brian Granger, who directed
her work.

Another open-source system, called Vizier,
focuses on data-driven reactivity, says Juli-
ana Freire, a computer scientist at New York
University, who co-directed the project.
With built-in data validation functions and a
spreadsheet interface, Vizier users can mas-
sage their data to fix inconsistencies — such as
those caused by a column that contains both
‘Y/N’ and ‘yes/no’ responses. As they do so, the
notebook re-executes. “You analyse, you clean,
you analyse, you clean,” Freire says. “And as
you do that, you save the whole provenance
of the process.” As a result, users can revert to
an earlier stage of clean-up and try again, all
the time logging the changes that they have
made. (Vizier notebooks can handle Python,
SQL and Scala code.)

Some commercial reactive systems, includ-
ing Observable, Deepnote and JetBrains’
Datalore (the last two of which are based
in the Czech Republic), also emphasize
another notebook pain point: collaboration.
Observable, for instance, allows real-time
collaborative editing, much as Google Docs
does, as well as commenting. There are two
plan tiers: Personal (free for up to 5 members
in the same interactive document) and Teams
(for 6 or more members: US$15 per editor, per
month; free for viewers).

Gábor Csányi, who studies molecular mod-
elling at the University of Cambridge, UK, uses
Deepnote (free for up to 3 collaborators, then

$12 per user, per month) in his teaching. With
his university’s previous system, a student
seeking help could share a copy of a notebook
with Csányi, but it wasn’t possible for both of
them to view and edit the same document at
the same time. “It was sort of a pain,” he says.
But with Deepnote, he can help students to
debug their code in real time. “Just like you do
with Google Docs, we see each other’s cursors.
We are editing the same notebook, and as they
press shift-enter on a cell, I see the result. That
was an incredible experience in how personal-
ized support could be done efficiently.”

Real-time collaboration is “a topic of mas-
sive activity” in the Jupyter project as well,
says Pérez, and an in-development prototype
is available on GitHub. “I’m pretty optimistic
that this will happen soonish,” he says.

Version control
Many commercial platforms also address
another notebook challenge: version control.
The file format of Jupyter notebooks includes
code, metadata, and computational output. As
those outputs are often binary images, version
control — the process that developers use to
track how files change, which is optimized for
plain-text files — can become difficult. Compli-
cating matters, programmers can struggle to
adapt standard version-control workflows to
the fast, iterative nature of data exploration. As
a result, crucial experimental details can be lost.

Commercial platforms tend to provide
built-in notebook versioning. For those who
prefer to stick with Jupyter, two plug-ins are
available: nbdime, which provides an intelli-
gent, structured view of file changes, including
of graphical output; and Verdant, which offers
a graphical interface that tracks how cells are
modified, reordered and executed.

According to developer Mary Beth Kery,
who studies human–computer interaction
at Carnegie Mellon University in Pittsburgh,
Pennsylvania, Verdant can smooth interac-
tions with collaborators and peer reviewers.
“Somebody will say, oh, did you try this in the
model, or did you try this analysis?” she says.
Many times, the answer is yes, but because
the analysis didn’t work, the code is deleted.
“What you want to do during the meeting is
just pull it back up and be like, oh, yeah, I did,
and here’s why it didn’t work. And our tool lets
you actually do that.”

Such features can make an already user-
friendly computing paradigm even friendlier
— and easier to share. And that makes them
even more powerful vehicles for scientific
communication. “If you do really great sci-
ence but no one understands it or no one gets
access to it, then what’s the point?” Drake says.
“These kinds of notebooks can really get peo-
ple excited and expose people to concepts that
are otherwise kind of impenetrable.”

Jeffrey M. Perkel is Nature’s Technology Editor.

“It really helps me get more
of a visceral feel for how these
statistical things work.”

Nature  |  Vol 593  |  6 May 2021  |  157

©

2021

Springer

Nature

Limited.

All

rights

reserved. ©

2021

Springer

Nature

Limited.

All

rights

reserved.

