
This year marks ten years since the 
launch of the IPython Notebook. The 
open-source tool, now known as the 
Jupyter Notebook, has become an 
exceedingly popular piece of data-

science kit, with millions of notebooks depos-
ited to the GitHub code-sharing site.

Computational notebooks combine code, 
results, text and images in a single document, 
yielding what Stephen Wolfram, creator of the 
Mathematica software package, has called a 
“computational essay”. And whether written 
using Jupyter, Mathematica, RStudio or any 
other platform, researchers can use them for 
iterative data exploration, communication, 
teaching and more.

But computational notebooks can also be 
confusing and foster poor coding practices. 
And they are difficult to share, collaborate 
on and reproduce. A 2019 study found that 
just 24% of 863,878 publicly available Jupyter 

notebooks on GitHub could be successfully 
re-executed, and only 4% produced the same 
results ( J. F. Pimentel et al. in 2019 IEEE/ACM 
16th International Conference on Mining 
Software Repositories (MSR) 507–517; IEEE, 
2019).

“Notebooks are messy,” says Anita Sarma, 
a computer scientist at Oregon State Univer-
sity in Corvallis who studies human–computer 
interaction. “You write stuff, you keep old 
crusty code behind, and it’s hard to kind of fig-
ure out which cells to execute in which order, 
because you were trying different things.”

But a growing suite of platforms and tools 
aims to smooth these rough edges. Some make 
notebooks ‘reactive’, so that code re-executes 
whenever software variables change; others 
focus on collaboration and version control. 
But all provide researchers with innovative 
ways to explore, document and share their 
data with colleagues and the world.

For Sergei Pond, notebooks have provided 
an outlet for documenting the genetics of 
the pandemic. Pond, a computational biol-
ogist at Temple University in Philadelphia, 
Pennsylvania, has created some three dozen 
documents related to SARS-CoV-2, the virus 
that causes COVID-19. “My default setting”, he 
says, is to “write up an interactive notebook 
and send it to my collaborators so they can 
play with the data, [so] they can immediately 
see what’s there.”

His notebook platform of choice is called 
Observable. It’s based in San Francisco, 
California, and was founded in 2019 by two 
Google alumni: Mike Bostock, developer of 
the D3 JavaScript library that powers many of 
the interactive data visualizations on the web 
today, and Melody Meckfessel. The company’s 
web-based notebook system allows users to 
create, share and reuse sophisticated, inter-
active visualizations written in JavaScript, the 
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programming language understood by web 
browsers. According to Meckfessel, “hundreds 
of thousands” of users do so every month.

Unlike Jupyter, which passes code to an 
external ‘kernel’ that executes it, Observable 
code runs in the browser itself. That makes the 
platform fast and responsive, Bostock says. But 
because JavaScript is not a typical data-science 
language, researchers often use Observable 
not for data processing but for visualization.

Pond, for instance, uses Observable to share 
colourful maps, graphs, protein structures and 
sequence alignments that represent data that 
he generates in other software. Observable’s 
modular structure means that other program-
mers can easily apply those visualizations to 
their own data. But Pond’s notebooks also take 
advantage of another key Observable feature: 
reactivity.

Suppose you have a Jupyter notebook that 
plots a line. In one code cell, you define the 
slope and y-intercept; in the next, you draw 
the graph. The notebook structure allows 
coders to return to the earlier cell to change 
the slope after the plot has been rendered. But 
that change does not cause the figure to be 
automatically redrawn; the user must manu-
ally re-execute the cell that plots it.

This workflow can lead to ‘state problems’, 
in which a notebook’s output does not reflect 
its code — as would happen, for instance, if 
the user deletes the cell that defines a vari-
able after it has been executed. In 2018, Joel 
Grus, then a software engineer at the Allen 
Institute for Artificial Intelligence in Seattle, 
Washington, highlighted this behaviour, and 
the ensuing confusion, in a widely viewed talk 
entitled “I don’t like notebooks”. But, “to a large 
degree, having fully reactive notebooks elim-
inates that feature,” he says now.

Reactive notebooks are similar to spread-
sheets, Bostock explains. Just as Microsoft 
Excel knows to recalculate a formula if the 
underlying cells change, reactive notebooks 
track how code cells relate to one another 
to ensure that a notebook’s output always 
reflects its variables.

Combined with visual widgets, such as sliders 
and pull-down lists, such behaviour makes note-
books interactive, allowing readers to explore 
how changing variables or assumptions can 
affect results. Herb Susmann, a biostatistics 
PhD student at the University of Massachusetts 
Amherst, for instance, uses reactive documents 
to explain statistical concepts. “It really helps 
me get more of a visceral feel for how these 
statistical things work,” he says. (That said, 
reactivity isn’t always desirable, particularly if 
cells take a long time to execute, or when data 
sets are very large.)

React and collaborate
Other reactive notebook systems exist 
for researchers who don’t use JavaScript. 
Susmann, for instance, has built a reactive 

notebook for R programmers, called Reactor. 
And Fons van der Plas, a software engineer in 
Berlin, created Pluto, a reactive notebook 
platform for the programming language Julia. 
Henri Drake, a graduate student of climate 
physics at the Massachusetts Institute of 
Technology in Cambridge, uses Pluto to 
demonstrate concepts in climate science. 
“Coding it up as an interactive Pluto notebook 
makes it a way more engaging experience 
for a first-time user,” Drake says, “and can 
really help people understand the models 
that I’m building.”

Fernando Pérez, a co-founder of Project 
Jupyter at the University of California, 
Berkeley, notes that Jupyter itself “is agnostic 
on the topic of reactivity”. Most kernels so far 
have been non-reactive, but they don’t have 
to be: Richa Gadgil, a former Jupyter intern at 
California Polytechnic State University in San 
Luis Obispo, for instance, spent her internship 
co-developing an experimental reactive kernel 
for Python. “It was a test of the Jupyter archi-
tecture and the Jupyter architecture passed 
that test,” says Brian Granger, who directed 
her work.

Another open-source system, called Vizier, 
focuses on data-driven reactivity, says Juli-
ana Freire, a computer scientist at New York 
University, who co-directed the project. 
With built-in data validation functions and a 
spreadsheet interface, Vizier users can mas-
sage their data to fix inconsistencies — such as 
those caused by a column that contains both 
‘Y/N’ and ‘yes/no’ responses. As they do so, the 
notebook re-executes. “You analyse, you clean, 
you analyse, you clean,” Freire says. “And as 
you do that, you save the whole provenance 
of the process.” As a result, users can revert to 
an earlier stage of clean-up and try again, all 
the time logging the changes that they have 
made. (Vizier notebooks can handle Python, 
SQL and Scala code.)

Some commercial reactive systems, includ-
ing Observable, Deepnote and JetBrains’ 
Datalore (the last two of which are based 
in the Czech Republic), also emphasize 
another notebook pain point: collaboration. 
Observable, for instance, allows real-time 
collaborative editing, much as Google Docs 
does, as well as commenting. There are two 
plan tiers: Personal (free for up to 5 members 
in the same interactive document) and Teams 
(for 6 or more members: US$15 per editor, per 
month; free for viewers).

Gábor Csányi, who studies molecular mod-
elling at the University of Cambridge, UK, uses 
Deepnote (free for up to 3 collaborators, then 

$12 per user, per month) in his teaching. With 
his university’s previous system, a student 
seeking help could share a copy of a notebook 
with Csányi, but it wasn’t possible for both of 
them to view and edit the same document at 
the same time. “It was sort of a pain,” he says. 
But with Deepnote, he can help students to 
debug their code in real time. “Just like you do 
with Google Docs, we see each other’s cursors. 
We are editing the same notebook, and as they 
press shift-enter on a cell, I see the result. That 
was an incredible experience in how personal-
ized support could be done efficiently.”

Real-time collaboration is “a topic of mas-
sive activity” in the Jupyter project as well, 
says Pérez, and an in-development prototype 
is available on GitHub. “I’m pretty optimistic 
that this will happen soonish,” he says.

Version control
Many commercial platforms also address 
another notebook challenge: version control.
The file format of Jupyter notebooks includes 
code, metadata, and computational output. As 
those outputs are often binary images, version 
control — the process that developers use to 
track how files change, which is optimized for 
plain-text files — can become difficult. Compli-
cating matters, programmers can struggle to 
adapt standard version-control workflows to 
the fast, iterative nature of data exploration. As 
a result, crucial experimental details can be lost.

Commercial platforms tend to provide 
built-in notebook versioning. For those who 
prefer to stick with Jupyter, two plug-ins are 
available: nbdime, which provides an intelli-
gent, structured view of file changes, including 
of graphical output; and Verdant, which offers 
a graphical interface that tracks how cells are 
modified, reordered and executed.

According to developer Mary Beth Kery, 
who studies human–computer interaction 
at Carnegie Mellon University in Pittsburgh, 
Pennsylvania, Verdant can smooth interac-
tions with collaborators and peer reviewers. 
“Somebody will say, oh, did you try this in the 
model, or did you try this analysis?” she says. 
Many times, the answer is yes, but because 
the analysis didn’t work, the code is deleted. 
“What you want to do during the meeting is 
just pull it back up and be like, oh, yeah, I did, 
and here’s why it didn’t work. And our tool lets 
you actually do that.”

Such features can make an already user-
friendly computing paradigm even friendlier 
— and easier to share. And that makes them 
even more powerful vehicles for scientific 
communication. “If you do really great sci-
ence but no one understands it or no one gets 
access to it, then what’s the point?” Drake says. 
“These kinds of notebooks can really get peo-
ple excited and expose people to concepts that 
are otherwise kind of impenetrable.”

Jeffrey M. Perkel is Nature’s Technology Editor. 

“It really helps me get more 
of a visceral feel for how these 
statistical things work.”
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