
Susanne Rafelski and her colleagues 
had a deceptively simple goal. “We 
wanted to be able to label many differ-
ent structures in the cell, but do live 
imaging,” says the quantitative cell 

biologist and deputy director of the Allen Insti-
tute for Cell Science in Seattle, Washington. 
“And we wanted to do it in 3D.”

That kind of goal normally relies on 
fluorescence microscopy — problematic in this 
case because, with only a handful of colours 
to use, the scientists would run out of labels 
well before they ran out of structures. Also 
problematic is that these reagents are pricey 
and laborious to use. Moreover, the stains 
are harmful to live cells, as is the light used 
to stimulate them, meaning that the very act 
of imaging cells can damage them. “Fluores-
cence is expensive, in many different versions 
of the word ‘expensive’,” says Forrest Collman, 
a microscopist at the Allen Institute for Brain 

Science, also in Seattle. When Collman and his 
colleagues tried to make a 3D time-lapse movie 
using three different colours, the results were 
“horrific”, Collman recalls. “The cells all just 
die in front of you.” 

Imaging cells using transmitted white light 
(bright-field microscopy) doesn’t rely on label-
ling, so avoids some of the problems of fluores-
cence microscopy. But the reduced contrast 
can make most cell structures impossible to 
spot. What Rafelski’s team needed was a way to 
combine the advantages of both techniques. 
Could artificial intelligence (AI) be used on 
bright-field images to predict how the corre-
sponding fluorescence labels would look — a 
type of ‘virtual staining’? In 2017, Rafelski’s 
then-colleague, machine-learning scientist 
Gregory Johnson, proposed just such a solu-
tion: he would use a form of AI called deep 
learning to identify hard-to-spot structures 
in bright-field images of unlabelled cells. 

“No way,” said Rafelski, as she headed off 
for a few months’ leave. When she returned 
to work, Johnson told her he’d done it. “It blew 
my mind that it was possible,” Rafelski recalls. 
Using a deep-learning algorithm on unlabelled 
cells, the Allen team created a 3D film showing 
DNA and substructures in the nucleus, plus cell 
membranes and mitochondria1.

“These models are ‘seeing’ things that 
humans don’t,” says Jason Swedlow, a quanti-
tative cell biologist at the University of Dundee, 
UK. Our eyes, he says, just aren’t adapted to 
pick out subtle, greyscale patterns such as 
those in optical microscopy — that’s not how 
we evolved. “Your eyes are supposed to see 
lions and trees and things like that.” 

Over the past few years, scientists working 
on AI have designed several systems that can 
pick out those patterns. Each model is trained 
using pairs of images of the same cells, one 
bright-field and one fluorescently labelled. 

AI SPOTS CELL STRUCTURES 
THAT HUMANS CAN’T
Models can predict the location of cell structures from light-microscopy 
images alone, without using harmful fluorescence labels. By Amber Dance
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But the models differ in the details: some are 
meant for 2D images, some for 3D; some aim 
to approximate cellular structures whereas 
others create pictures that could be mistaken 
for true photomicrographs. 

“This represents a huge advance in what we 
are able to achieve,” says Mark Scott, micros-
copy facility manager at the Translational 
Research Institute Australia in Brisbane. 
What’s needed now is for biologists to collab-
orate with the AI coders, testing and improving 
the technology for real-world use.

Fast-growing field
Steven Finkbeiner, a neuroscientist at the Uni-
versity of California, San Francisco, and the 
Gladstone Institutes, also in San Francisco, 
uses robotic microscopy to track cells for up 
to a year. By the early 2010s, his group was 
accumulating terabytes of data per day. That 
caught the attention of researchers at Google, 
who asked how they might help. Finkbeiner 
suggested using deep learning to find the 
cellular features he couldn’t see.

Deep learning uses computer nodes layered 
in a similar way to neurons in the human brain. 
At first, the connections between nodes in this 
neural network are weighted randomly, so the 
computer is only guessing. But with training, 
the computer adjusts the weights, or param-
eters, until it starts to get it right. 

Finkbeiner’s team trained its system to iden-
tify neurons in 2D images, then pick out the 
nucleus and determine whether a given cell 
is alive or not2. “The main point was to show 
scientists that there is probably a lot more 
information in image data than they realize,” 
says Finkbeiner. The team called its technique 
in silico labelling.

The approach couldn’t identify motor 
neurons, however — perhaps because there 
wasn’t anything in the unlabelled cells to indi-
cate their specialization. These predictions 
will only work if there’s some visible cue that 
the AI can use, Collman says. Membranes, for 
example, have a different refractive index to 
their surroundings, producing contrast. 

Collman, Johnson and their colleagues at the 
Allen Institute used a different neural network 
to solve Rafelski’s problem, building on a sys-
tem called U-Net that was developed for bio-
logical images. Unlike Finkbeiner’s approach, 
the Allen model works with 3D micrographs, 
and some researchers at the institute now use 
it routinely — for example, to identify nuclear 
markers in studies of chromatin organization. 

At the University of Illinois at Urbana- 
Champaign, physicist Gabriel Popescu is using 
deep learning to answer, among other things, 
one of the most fundamental microscopy ques-
tions: is a cell alive or dead? That’s harder than 
it sounds because tests for life, paradoxically, 
require toxic chemicals. “It’s like taking the 
pulse of the patient with a knife,” he says.

Popescu and his colleagues call their 

approach PICS: phase imaging with computa-
tional specificity. Popescu uses it in live cells to 
identify the nucleus and cytoplasm, then cal-
culates their masses over days at a time3. These 
signatures accurately indicate cell growth and 
viability, he says.

PICS encompasses software based on 
U-Net and microscope hardware, so instead 
of obtaining images and training a machine to 
process them later, it all happens seamlessly. 
Once a user snaps a white-light image, it takes 
just 65 milliseconds for the model to deliver 
the predicted fluorescence counterpart. 

Other groups use different kinds of machine 
learning. For instance, a team at the Catholic 
University of America in Washington DC used a 
type of neural network called a GAN to identify 
nuclei in images from phase-contrast optical 
microscopy4. A GAN, or generative adversarial 
network, sets up two opposing models: the 
‘generator’ predicts the fluorescence images, 
and the ‘discriminator’ guesses whether 
they’re real or fake. When the discriminator 
is fooled about half the time, the generator 
must be making plausible predictions, says 
Lin-Ching Chang, an engineer on the pro-
ject. “Even humans cannot tell the generated 
examples are fake.” 

Drug discovery
Fluorescence predictions are also taking 
hold in the drug industry. At AstraZeneca in 
Gothenburg, Sweden, pharmacologist Alan 
Sabirsh studies fat cells for their roles in dis-
ease and drug metabolism. Sabirsh and Astra-
Zeneca teamed up with the Swedish National 
Center for applied Artificial Intelligence to 
run the Adipocyte Cell Imaging Challenge, 
asking competitors to identify the nucleus, 
cytoplasm and lipid droplets in unlabelled 
micrographs. Its US$5,000 prize went to a 
team led by Ankit Gupta and Håkan Wies-
lander, two PhD students at Uppsala Univer-
sity in Sweden, who work on image processing. 

Like Chang and her colleagues, the team 
used a GAN to identify lipid droplets. But to get 
at the nuclei, they used a different technique, 
called LUPI — learning using privileged infor-
mation, which gives the machine extra help as 
it learns. In this case, the team used a further 
image-processing technique to identify the 
nuclei in the standard training image pairs. 
Once the model was trained, however, it could 
predict nuclei on the basis of light-microscopy 
images alone5.

The resulting images aren’t perfect: Gupta 
says real fluorescence staining provides more 
realistic texturing in the nucleus and cyto-
plasm than the model can. It’s good enough 
for Sabirsh, however. He has already started 
using the code in robotic-microscopy experi-
ments with the aim of developing therapeutics.

With several proof-of-principle projects 
complete, the technique has moved beyond 
the first baby steps, says Swedlow, and the 

wider community is beginning to put it 
through its paces. “I think we are learning to 
walk, and what it means to walk,” he says.

For example, when is it beneficial to 
make predictions on the basis of white-light 
images, and when should it be avoided? Try-
ing to determine segmentation of cellular 
compartments and structures is probably a 
good application, because any errors won’t 
significantly affect downstream results, says 
Anne Carpenter, senior director of the Imaging 

Platform at the Broad Institute of MIT and Har-
vard in Cambridge, Massachusetts. She’s more 
circumspect about predicting experimental 
outcomes, however, because the machine 
might rely on one structure that predicts 
another only under control conditions. “Often, 
in biology, it’s the exceptions to the rule that 
are what we’re looking for,” Carpenter says. 

For now, at least, scientists would do well to 
confirm a model’s key predictions using stand-
ard fluorescence staining, says Popescu. And it’s 
a good idea to seek expert collaborators, adds 
Laura Boucheron, an electrical engineer at New 
Mexico State University in Las Cruces. “There’s 
a lot of very significant computer know-how 
required to even get these up and running.” 

Some models use just a handful of images 
for training, but Boucheron cautions that 
larger data sets are preferable. Hundreds, 
or better yet thousands, might be required, 
says Yvan Saeys, a computational biologist at 
the VIB Center for Inflammation Research at 
Ghent University in Belgium. And if you want 
the model to work with multiple cell types 
or different microscope set-ups, be sure to 
include that variety in the training set, he adds.

Large-volume training might require weeks 
of time on supercomputers with multiple 
graphical processing units, warns Boucheron. 
But once that’s done, the prediction model 
could run off a laptop, or even a mobile phone. 

For many researchers, that one-time invest-
ment is worth it, if it means never staining for 
this or that feature again. “If you could collect 
pictures of unlabelled cells and you already 
had trained algorithms,” says Finkbeiner. “You 
get all that information, basically, for free.”

Amber Dance is a science journalist in Los 
Angeles, California. 
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