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S1 DATA AND DATA SOURCES  
Our genomic reference is comprised by the 38,546 transcripts annotated by GENCODE v35 (GRCh38.p13)1, 1 million 

SNPs present in the GWAS catalogue2, and the ENCODE project list of promoters and enhancers
3, 7712 drugs retrieved 

from DrugBank4, 1660 diseases collected from CTD5, OMIM
6
, DisGeNet

7,8
, Orphanet, ClinGen

9
, ClinVar

10
, GWAS 

catalogue
2
, PheGenI

11
, lncRNADisease

12,13 and HMDD
14

. We scraped the PubMed ids for all references linking a 
transcript to a disease (GWAS catalogue & OMIM), or on the National Institute of Bioinformatics (NCBI), uncovering a 
total of 2,386,046 genome-publication relationships (Table S 1).  

 

Type Total Number of 
Elements 

Unreferenced 
Elements  

Publication 
References 

Unique 
Publications 

Enhancer 809,429 0 1 1 
SNP 125,128 0 157,975 4,147 
Promoter 58,565 0 1 1 
protein coding 19,757 608 1,534,274 663,835 
pseudogene 9,127 8,491 3,465 2,038 
regulatory RNAs 6264 1,998 49,210 29,949 
post-transcriptional modification 
RNAs 

2263 1,846 1675 298 

misc_RNA 1033 1,007 87 47 
Other 62 14 218 174 
rRNA 40 21 132 52 

Table S 1 Genomic Elements. The number of genomic elements by type and the number of publications referencing those elements. 

 

The publication meta-data was gathered for the resulting 704,515 PubMed publications, giving the year of publication. 
Additionally, the publications were linked to the Microsoft Academic Graph (MAG) to gather author information and 
field of study (level 0 and 1 fields). We see in Table S 2 that most protein-coding genes had their first publication 
before the first draft of the HGP in 2001, while the vast majority of the other genomic elements started drawing 
attention from the scientific community after that.  

Type Before 2001 After 2001 
protein coding 15,068 4,156 
regulatory RNAs 445 3,821 
post-transcriptional modification RNAs 187 230 
pseudogene 184 452 
Other 15 33 
misc_RNA 9 17 
rRNA 5 14 
Enhancer 0 809,429* 
Promoter 0 58,565 
SNP 0 125,128 

Table S 2The number of genomic elements discovered before and after the HGP. 

*NOTE: enhancers all come from a 2020 publication and therefore are not included in the trend graphs. 
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We further linked the identified gene transcripts to 1,600 diseases with documented genetic roots, collected from 

CTD5, OMIM
6
, DisGeNet

7,8
, Orphanet, ClinGen

9
, ClinVar

10
, GWAS catalogue

2
, PheGenI

11
, lncRNADisease

12,13 and HMDD
14

. 
Using data from the Genome Wide Association Studies (GWAS) catalogue, we mapped each SNP to the GENCODE 
human assembly and identified where each of the SNPs are located in the genome. We find that more than 90% of 
the SNPs associated with traits are located in protein-coding regions, enhancers or lncRNAs (Table S 3).  

Drugs can have multiple targets, with different pharmacological functions. DrugBank classifies targets into four main 
categories: Polypeptides, Enzymes, Carries and Transporters (Figure S 1). Polypeptides are mostly related with disease 
modifications, while the other categories are related to the metabolism of the drug. Therefore, for the results 
discussed in the main paper we present only approved drugs and their polypeptide targets, unless stated otherwise.  

 
Genomic 
Element 

SNP count % 

Protein-
coding 

69,886 71.12 

Enhancer 15,911 16.20 
lncRNA 9,633 9.80 
Promoter 1,497 1.53 
Pseudogene 1,302 1.32 
miRNA 13 0.01 
snRNA 13 0.01 
Other RNAs 12 0.01 

Table S 3 Where do SNPs with associated traits land? The number of SNPs associated with traits, and the genomic elements by 
type where they are located. Protein-coding genes, enhancers and lncRNAs are the ``mutation hot-spots'' associated to traits. 
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Figure S 1 Genes are targets from multiple drugs.  Most of the genes that are targeted by pharmacological drugs are targeted by 
multiple drugs, independent of their role in the drug delivery. Genes associated to approved drugs tend to be associated to more 
drugs than non-approved drugs, showing that there is a bias towards known and approved targets. 
 

Type approved non-approved 
Polypeptide 2149 1905 
Enzyme 368 93 
Carrier 78 16 
Transporter 252 54 
Total Targets 2467 1988 
Total Drugs 2208 3894 

Table S 4 Targets for approved and non-approved drugs. 
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Figure S 2 Targets from approved and non-approved drugs have a small overlap. Showing that we are still exploring new target 
options for drugs. 
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Figure S 3 (A) The number of publications each year that reference a regulatory non-coding RNA (an important subset of the 
elements shown in Fig Discovery of genomic elements. (B) The number of publications each year linking SNPs to traits in the GWAS 
catalogue. (C) The cumulative number of known protein-protein and protein-genetic interactions whose growth reflects the rise of 
network genomics. (D) The cumulative number of publications for all protein-coding genes. 

S2 ATTENTION INEQUALITY  
As shown in Figure S 4, the distribution of the total number of publications per gene is heavy-tailed. To measure the 
inequality in publications per gene represented by the distributions in Figure S 4, we calculate the Gini coefficient. The 
Gini coefficient is a real number between 0 and 1, whose value is 0 if all genes are mentioned in exactly the same 
number of publications, and 1 denotes maximum inequality among the genes, where all attention is devoted to a 
single gene. As we can see in Figure S 5, the Gini coefficient has steadily increased since 1960, reflecting a growing 
inequality in the number of publications per gene.  

As shown in Figure S 6, the change in the number of publications per gene (dk) grows linearly with the accumulated 
number of publications per gene (k) in the log-log plot.  See Barabasi 2016, Network Science for details.  

The distributions of scientific interest as measured by drug targets (Figure S 7A) and disease associations (Figure S 7B) 
is similarly heavy-tailed. For example, the gene ADRA1A is targeted by 103 drugs while 1,294 genes are targeted by 
only one drug, and the gene APOE is associated with 27 diseases, while 2,471 genes are associated with only 1 disease. 
Similarly, the number of genes targeted by each drug (Figure S 7C) and the number of genes associated with each 
disease (Figure S 7D) are heavy-tailed.  
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Figure S 4 Growing inequality in publications per gene. The most studied gene was the focus of 161 publications in 1990, while 
today the most explored gene has been referenced by almost 10,000 publications each year.  (left) pdf, (right) cdf for each decade 
1980-2020. 
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Figure S 5 Growing inequality in publications per gene. The Gini coefficient measuring inequality in the distribution of publications 
per gene. 
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Figure S 6 Preferential attachment (PA) of attention to genes.  The change in the number of publications per gene (dk) given the 
existing number of publications per gene (k) for all genes in the dataset (grey).  Also shown is the preferential growth for the top 5 
most published genes.  The average increase in the number of publications per gene follows a linear trend, reflecting the presence 
of preferential attachment 15.    The plot shows the PA function, where the observed k dependence (dashed line, guide to the eye) 
is evidence of preferential attachment, while a constant k dependence (solid line, guide to the eye) would imply the lack of it. 
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Figure S 7  Inequality in scientific interest from drugs and diseases. A) The distribution of the number of drugs targeting each gene. 
B) The distribution of the number of diseases associated with each gene. C) The distribution of the number of genes targeted by 
each drug. D) The distribution of the number of genes associated with each disease. 

 

Figure S 8. The normalized yearly publications referencing (a) protein coding transcripts, (b) pseudogenes, and (c) SNPs.  The 
number of publications in biology is used as the denominator. 
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S3 LARGEST COLLABORATIONS  
The publication team size is defined as the number of authors linked to the publication on the Microsoft Academic 
Graph (MAG). In most cases, the MAG lists all authors in a consortium, although a few exceptions were identified in 
which the consortium name appeared as the sole author. To define the set of all publications, we limited the analysis 
to only document type “journal article” with at least 20 citations. We further defined the biology publications using 
the level 0 field “Biology” in the MAG.  
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