
Jennifer Johnson’s principal investigator
had a simple request. Since 2018, their
team had sequenced the DNA of some
1,300 silver fox (Vulpes vulpes) specimens,
and the lab head wanted to know precisely

how many bases it had collected, and how well
those bases aligned to the reference genome.

Johnson, a bioinformatician at the University
of Illinois at Urbana-Champaign, had the nec-
essary data. But they were scattered across
her hard drive. The most obvious solution was
also the most painful: to open each file, find
the required information, close and repeat —
1,300 times. So Johnson took another tack,
using the command line.

Prebuilt into macOS and Unix systems, and

available on Windows through such tools as
the free ‘Windows Subsystem for Linux’ and
MobaXterm, the command line (also called
the shell) is a powerful text-based interface
in which users issue terse instructions to cre-
ate, find, sort and manipulate files, all without
using the mouse. There are actually several
distinct (although largely compatible) shell
systems, among the most popular of which is
Bash, an acronym for the ‘Bourne again shell’ (a
reference to the Bourne shell, which it replaced
in 1989).

Bash is both a collection of small utilities
and a full-blown programming language,
ranging from ‘grep’, a powerful text-search
tool, to ‘for loops’, which allows users to repeat

actions across multiple files. Johnson directed
her terminal to scan her hard disk for sequenc-
ing data files, extract the needed information
and compile them into a tidy spreadsheet.
“That took me less than 10 minutes,” she says;
recomputing the data would have taken a full
day.

Many computational disciplines, such as
bioinformatics, rely heavily on the command
line. But all researchers who use computers
can benefit from it, says Jeroen Janssens, prin-
cipal instructor of Data Science Workshops in
Rotterdam, the Netherlands, and author of the
2014 book Data Science at the Command Line.
“The mouse doesn’t scale,” Janssens explains.
For instance, although it is certainly possible

FIVE REASONS TO LOVE
THE COMMAND LINE
The text interface is intimidating, but can save researchers from mundane
computing tasks. Just be sure you know what you’re doing. By Jeffrey M. Perkel

IL
LU

ST
R

A
T

IO
N

 B
Y

 T
H

E
P

R
O

JE
C

T
 T

W
IN

S

Nature | Vol 590 | 4 February 2021 | 173

Work / Technology & tools

©

2021

Springer

Nature

Limited.

All

rights

reserved.

to rename a file by pointing and clicking, that
task becomes tedious when it is scaled to
hundreds or thousands of files.

Here, we highlight five ways the command
line can ease your computational research.

Wrangle files
Perhaps the shell’s most powerful feature is the
ability to repeat simple tasks across multiple
files. Researchers could, for instance, system-
atically rename their files to add a date stamp,
or convert them from one format to another
(see our example code at https://github.com/
jperkel/nature_bash).

During his postdoctoral studies, Casey
Greene’s adviser insisted that all images
of figures that were used in presentations
had a black background. Greene got pretty
good, he says, at opening figures in an image
editor, inverting and colour-rotating them,
and repeating. “But at some point, it turns
out life is too short to continue importing
and colour-rotating in even a free software
program that is relatively easy to use,” says
Greene, who now directs the Center for Health
Artificial Intelligence at the University of
Colorado School of Medicine in Aurora. So,
he turned to the command line — specifically,
the free and open-source image-manipulation
tool ImageMagick, using a for loop to repeat
the operation across all his files:

for file in *.png; do convert $file -channel
RGB -negate -modulate 100,100,200 out_$-
file; done;

Handle big data
Some data sets are simply too big to handle.
For a project studying digital object identifier
(DOI) metadata, Elizabeth Wickes, an infor-
mation scientist at the University of Illinois
at Urbana–Champaign, harvested millions
of XML files. But committing those files to a
version-control repository overloaded her
system: “GitHub Desktop and my system
indexing just barfed on it,” she says. Using the
‘git’ command-line tool, however, she tackled
the problem in an hour and a half.

Similarly, Lynette Strickland, an evolu-
tionary biologist at Texas A&M University in
Corpus Christi, has documented millions of
genetic variants for her research on invasive
lionfish (Pterois sp.). The data are too large for
Microsoft Excel, which caps spreadsheets at
about one million rows. So, Strickland used the
shell to identify the records (spreadsheet rows)
that exceeded a certain quality threshold,
extract just the columns she needed, and save
the data to a new file, using a command that
looks something like this (assuming the quality
score is in column 4, the cut-off threshold is 50,
and the desired columns are 1–4):

awk -F, ‘{ if ($4 > 50) print $0 }’ datafile.csv
| cut -d, -f1-4 > newdatafile.csv

“By just taking the specific information that I
need from it using [the shell], I can really, really

condense it into something that I can actually
work with and visualize,” she says.

Manipulate spreadsheets
Shell commands perform seemingly simple
operations. The ‘cut’ command, for instance,
extracts one or more columns from a spread-
sheet; ‘wc’ counts words, lines or characters;
‘awk’ filters files for lines that match a certain
condition; and ‘sed’ manipulates text ‘streams’.
But these simple commands can be strung
together using ‘pipe’ (‘|’), a shell feature that fun-
nels the output of one command into another,
thus creating powerful bespoke workflows. “It’s
very good for what we call ‘whip-it-up-itude’ —
getting things going quickly, prototyping,” says
Tom Ryder, a systems administrator based in
Palmerston North, New Zealand, and author of
the 2018 book Bash Quick Start Guide.

The following command, for instance,
combines five utilities to count the unique
gene names in a gene-expression data set:

cut -f1 GEOdataset.csv | sed -E ‘s/^>//’ | sort
| uniq | wc -l

These steps extract (cut) the first column
(containing the name) from the spreadsheet;
remove a leading greater-than symbol (sed);
sort the list alphabetically; reduce that list to
its unique values (uniq); and print the total
number of lines (that is, gene names) to the
screen (wc).

Parallelize your work
Christina Koch, a research computing facilita-
tor at the University of Wisconsin–Madison,
works at a computing centre that provides
remote access to some 14,000 nodes and tera-
bytes of memory. Suppose, Koch says, that a
bioinformatician has a computational work-
flow for analysing gene-expression data sets.
Each data set takes a day to process on their
computer, and the researcher has 60 such data
sets. “That’s two months of non-stop running,”
she says. But, by sending the job to a computer
cluster using the ‘secure shell’ command, ‘ssh’,
which opens an encrypted portal to the remote
system, the researcher can parallelize the com-
putations across 60 computers. “Instead of
two months, it takes one day.”

Even without such power, ‘ssh’ provides the
ability to work remotely — an especially useful
feature during a pandemic. With COVID-19
lockdowns looming in 2020, Gabriel Devenyi,
a systems administrator and programmer at
the Douglas Mental Health University Institute

in Montreal, Canada, worked to ensure that
the researchers in his facility were set up to
stay productive, wherever they happened
to quarantine. “Without having this in place,
none of the students would have been able to
do anything,” he says.

Automate
Shell commands can be stored in text files
called scripts, which can be saved, shared and
version-controlled, enhancing reproducibil-
ity. They can also be automated. Using the
‘cron’ command, users can schedule scripts
to run when it’s convenient for them. For
instance, says Wickes, some websites ask that
users who plan to ‘scrape’ content do so during
off-peak hours — in the case of the PubMed
literature database, between 9 p.m. and 5 a.m.
Eastern time. “You can have [the script] run
only at the times you are allowed,” she says.
Alternatively, users can download data to their
primary computer daily, because many shared
systems routinely delete older files.

Warning: no undo
The flip side of this power is the shell’s intim-
idating interface, often just a dollar sign and
a cursor. “That’s scary for some people,” says
Janssens. The shell provides little in the way of
help. And it can be “unforgiving”, Janssens notes.
An improperly positioned space can change a
command’s meaning, and few commands will
by default ask if you know what you’re doing.
“If you have the right to do it within the system,
[the shell] assumes that you meant to do it the
way you said it,” Devenyi says. “And so you can
do lots of various dangerous things.”

The classic example is rm -rf * — a command
that deletes all files from the current directory
and everything below. If executed from the
wrong location, crucial work can be lost.
“We’ve all done that,” says Johnson. So proceed
with caution.

One simple trick is to use the ‘echo’
command to ensure that you’re specifying
the files you intend. “‘Echo before execute’
is a very good rule of thumb,” says Greene.
Some commands provide a ‘dry-run’ mode,
which reports what they intend to do, and/
or an ‘interactive’ mode, which prompts the
user before making changes. Users can also set
variables to prevent the computer from over-
writing files, or to exit when there is an error
(‘noclobber’ and ‘pipefail’, respectively). And
they should avoid running commands while
they have administrative privileges.

“Life comes at you fast,” says Wickes. “And sci-
ence can come at you fast sometimes.” The shell
makes it possible to handle the unexpected.
Besides, says Koch, it’s fun. “It’s so powerful, and
I feel like such a cool nerd when I’m using it,” she
says. “You can feel very competent.”

Jeffrey M. Perkel is technology editor
at Nature.

“Shell commands can be
stored in text files called
scripts, which can be
saved, shared and version-
controlled.”

174 | Nature | Vol 590 | 4 February 2021

Work / Technology & tools

©

2021

Springer

Nature

Limited.

All

rights

reserved.

