
IL
LU

ST
R

A
T

IO
N

 B
Y

 P
A

W
EŁ

 JO
Ń

C
A

344 | Nature | Vol 589 | 21 January 2021

Feature

©

2021

Springer

Nature

Limited.

All

rights

reserved. ©

2021

Springer

Nature

Limited.

All

rights

reserved.

I
n 2019, the Event Horizon Telescope
team gave the world the first glimpse
of what a black hole actually looks like.
But the image of a glowing, ring-shaped
object that the group unveiled wasn’t a
conventional photograph. It was com-
puted — a mathematical transformation
of data captured by radio telescopes in

the United States, Mexico, Chile, Spain and
the South Pole1. The team released the pro-
gramming code it used to accomplish that
feat alongside the articles that documented
its findings, so the scientific community could
see — and build on — what it had done.

It’s an increasingly common pattern. From
astronomy to zoology, behind every great
scientific finding of the modern age, there is
a computer. Michael Levitt, a computational
biologist at Stanford University in California
who won a share of the 2013 Nobel Prize in
Chemistry for his work on computational
strategies for modelling chemical struc-
ture, notes that today’s laptops have about

10,000 times the memory and clock speed
that his lab-built computer had in 1967, when
he began his prizewinning work. “We really do
have quite phenomenal amounts of comput-
ing at our hands today,” he says. “Trouble is, it
still requires thinking.”

Enter the scientist-coder. A powerful com-
puter is useless without software capable of
tackling research questions — and researchers
who know how to write it and use it. “Research
is now fundamentally connected to software,”
says Neil Chue Hong, director of the Software
Sustainability Institute, headquartered in
Edinburgh, UK, an organization dedicated to
improving the development and use of soft-
ware in science. “It permeates every aspect of
the conduct of research.”

Scientific discoveries rightly get top bill-
ing in the media. But Nature this week looks
behind the scenes, at the key pieces of code
that have transformed research over the past
few decades.

Although no list like this can be definitive,

TEN COMPUTER
CODES THAT
TRANSFORMED
SCIENCE
From Fortran to preprint archives, these
advances in programming and platforms
sent biology, climate science and physics
to new heights. By Jeffrey M. Perkel

we polled dozens of researchers over the past
year to develop a diverse line-up of ten soft-
ware tools that have had a big impact on the
world of science.

Language pioneer:
the Fortran compiler (1957)
The first modern computers weren’t user-
friendly. Programming was literally done by
hand, by connecting banks of circuits with
wires. Subsequent machine and assembly lan-
guages allowed users to program computers in
code, but both still required an intimate knowl-
edge of the computer’s architecture, putting
the languages out of reach of many scientists.

That changed in the 1950s with the devel-
opment of symbolic languages — in particular
the ‘formula translation’ language Fortran,
developed by John Backus and his team at IBM
in San Jose, California. Using Fortran, users
could program computers using human-read-
able instructions, such as x = 3 + 5. A compiler
then turned such directions into fast, efficient
machine code.

It still wasn’t easy: in the early days, pro-
grammers used punch cards to input code,
and a complex simulation might require tens of
thousands of them. Still, says Syukuro Manabe,
a climatologist at Princeton University in New
Jersey, Fortran made programming accessible
to researchers who weren’t computer scientists.
“For the first time, we were able to program [the
computer] by ourselves,” Manabe says. He and
his colleagues used the language to develop one
of the first successful climate models.

Now in its eighth decade, Fortran is still widely
used in climate modelling, fluid dynamics,
computational chemistry — any discipline that
involves complex linear algebra and requires
powerful computers to crunch numbers
quickly. The resulting code is fast, and there
are still plenty of programmers who know how
to write it. Vintage Fortran code bases are still
alive and kicking in labs and on supercomput-
ers worldwide. “Old-time programmers knew
what they were doing,” says Frank Giraldo, an
applied mathematician and climate modeller
at the Naval Postgraduate School in Monterey,
California. “They were very mindful of memory,
because they had so little of it.”

Signal processor:
fast Fourier transform (1965)
When radioastronomers scan the sky, they
capture a cacophony of complex signals
changing with time. To understand the
nature of those radio waves, they need to see
what those signals look like as a function of
frequency. A mathematical process called a
Fourier transform allows researchers to do
that. The problem is that it’s inefficient, requir-
ing N2 calculations for a data set of size N.

In 1965, US mathematicians James Cooley
and John Tukey worked out a way to acceler-
ate the process. Using recursion, a ‘divide and

Nature | Vol 589 | 21 January 2021 | 345

©

2021

Springer

Nature

Limited.

All

rights

reserved. ©

2021

Springer

Nature

Limited.

All

rights

reserved.

conquer’ programming approach in which an
algorithm repeatedly reapplies itself, the fast
Fourier transform (FFT) simplifies the prob-
lem of computing a Fourier transform to just
N log2(N) steps. The speed improves as N grows.
For 1,000 points, the speed boost is about
100-fold; for 1 million points, it’s 50,000-fold.

The ‘discovery’ was actually a rediscovery
— the German mathematician Carl Friedrich
Gauss worked it out in 1805, but he never
published it, says Nick Trefethen, a mathe-
matician at the University of Oxford, UK. But
Cooley and Tukey did, opening applications
in digital signal processing, image analysis,
structural biology and more. “It’s really one of
the great events in applied mathematics and
engineering,” Trefethen says. FFT has been
implemented many times in code. One popu-
lar option is called FFTW, the ‘fastest Fourier
transform in the west’.

Paul Adams, who directs the molecular bio-
physics and integrated bioimaging division at
Lawrence Berkeley National Laboratory in Cali-
fornia, recalls that when he refined the structure
of the bacterial protein GroEL in 1995 (ref. 2), the
calculation took “many, many hours, if not days”,
even with the FFT and a supercomputer. “Trying
to do those without the FFT, I don’t even know
how we would have done that realistically,” he
says. “It would have just taken forever.”

Molecular cataloguers:
biological databases (1965)
Databases are such a seamless component of
scientific research today that it can be easy to
overlook the fact that they are driven by soft-
ware. In the past few decades, these resources
have ballooned in size and shaped many fields,
but perhaps nowhere has that transformation
been more dramatic than in biology.

Today’s massive genome and protein data-
bases have their roots in the work of Margaret
Dayhoff, a bioinformatics pioneer at the
National Biomedical Research Foundation in
Silver Spring, Maryland. In the early 1960s, as
biologists worked to tease apart proteins’ amino
acid sequences, Dayhoff began collating that
information in search of clues into evolutionary
relationships between different species. Her
Atlas of Protein Sequence and Structure, first pub-
lished in 1965 with three co-authors, described
what was then known of the sequences, struc-
tures and similarities of 65 proteins. The collec-
tion was the first that “was not tied to a specific
research question”, historian Bruno Strasser
wrote in 2010 (ref. 3). And it encoded its data in
punch cards, which made it possible to expand
the database and search it.

Other computerized biological databases
followed. The Protein Data Bank, which today
details more than 170,000 macromolecular
structures, went live in 1971. Russell Doolittle,
an evolutionary biologist at the University of
California, San Diego, created another protein
database called Newat in 1981. And 1982 saw

the release of the database that would become
GenBank, the DNA archive maintained by the
US National Institutes of Health.

Such resources proved their worth in July
1983, when separate teams led by Michael
Waterfield, a protein biochemist at the Imperial
Cancer Research Fund in London, and Doolittle
independently reported a similarity between
the sequences of a particular human growth
factor and a protein in a virus that causes can-
cer in monkeys. The observation suggested a
mechanism for oncogenesis-by-virus — that by
mimicking a growth factor, the virus induces
uncontrolled growth of cells4. “That set the
light bulb off in some of the minds of biologists
who were not into computers and statistics,”
says James Ostell, former director of the US
National Center for Biotechnology Informa-
tion (NCBI): “We can understand something
about cancer from comparing sequences.”

Beyond that, Ostell says, the discovery
marked “an advent of objective biology”. In
addition to designing experiments to test
specific hypotheses, researchers could mine
public data sets for connections that might
never have occurred to those who actually col-
lected the data. That power grows drastically
when different data sets are linked together
— something NCBI programmers achieved in
1991 with Entrez, a tool that allows research-
ers to freely navigate from DNA to protein to
literature and back.

Stephen Sherry, current acting director of
the NCBI in Bethesda, Maryland, used Entrez
as a graduate student. “I remember at the time
thinking it was magic,” he says.

Forecast leader:
the general circulation model (1969)
At the close of the Second World War, com-
puter pioneer John von Neumann began turn-
ing computers that a few years earlier had been

calculating ballistics trajectories and weapon
designs towards the problem of weather pre-
diction. Up until that point, explains Manabe,
“weather forecasting was just empirical”, using
experience and hunches to predict what would
happen next. Von Neumann’s team, by con-
trast, “attempted to do numerical weather
prediction based upon laws of physics”.

The equations had been known for dec-
ades, says Venkatramani Balaji, head of the
Modeling Systems Division at the National
Oceanographic and Atmospheric Administra-
tion’s Geophysical Fluid Dynamics Laboratory
in Princeton, New Jersey. But early meteorol-
ogists couldn’t solve them practically. To do
so required inputting current conditions,
calculating how they would change over a
short time period, and repeating — a process
so time-consuming that the mathematics
couldn’t be completed before the weather
itself caught up. In 1922, the mathematician
Lewis Fry Richardson spent months crunching
a six-hour forecast for Munich, Germany. The
result, according to one history, was “wildly
inaccurate”, including predictions that “could
never occur under any known terrestrial condi-
tions”. Computers made the problem tractable.

In the late 1940s, von Neumann established
his weather-prediction team at the Institute for
Advanced Study at Princeton. In 1955, a second
team — the Geophysical Fluid Dynamics Lab-
oratory — began work on what he called “the
infinite forecast” — that is, climate modelling.

Manabe, who joined the climate modelling
team in 1958, set to work on atmospheric mod-
els; his colleague Kirk Bryan addressed those
for the ocean. In 1969, they successfully com-
bined the two, creating what Nature in 2006
called a “milestone” in scientific computing.

Today’s models can divide the planet’s
surface into squares measuring 25 × 25 kilo-
metres, and the atmosphere into dozens
of levels. By contrast, Manabe and Bryan’s
combined ocean–atmosphere model5 used
500-km squares and 9 levels, and covered
just one-sixth of the globe. Still, says Balaji,
“that model did a great job”, allowing the team
to test for the first time the impact of rising
carbon dioxide levels in silico.

Number cruncher:
BLAS (1979)
Scientific computing typically involves rela-
tively simple mathematical operations using
vectors and matrices. There are just a lot of
them. But in the 1970s, there was no universally
agreed set of computational tools for perform-
ing such operations. As a result, programmers
working in science would spend their time
devising efficient code to do basic mathemat-
ics rather than focusing on scientific questions.

What the programming world needed was
a standard. In 1979, it got one: Basic Linear
Algebra Subprograms, or BLAS6. The stand-
ard, which continued to evolve up to 1990,

Molecules such as those in this bacterial
‘expressome’ can be explored using the
Protein Data Bank.

D
A

V
ID

 S
. G

O
O

D
SE

LL
 A

N
D

 R
C

SB
 P

D
B

 (C
C

 B
Y

 4
.0

)

346 | Nature | Vol 589 | 21 January 2021

Feature

©

2021

Springer

Nature

Limited.

All

rights

reserved. ©

2021

Springer

Nature

Limited.

All

rights

reserved.

defined dozens of fundamental routines for
vector and, later, matrix mathematics.

In effect, BLAS reduced matrix and vector
mathematics to a basic unit of computation
as fundamental as addition and subtraction,
says Jack Dongarra, a computer scientist at
the University of Tennessee in Knoxville who
was a member of the BLAS development
team.

BLAS was “probably the most consequential
interface to be defined for scientific comput-
ing”, says Robert van de Geijn, a computer
scientist at the University of Texas at Austin.
In addition to providing standardized names
for common functions, researchers could be
sure BLAS-based code would work in the same
manner on any computer. The standard also
enabled computer manufacturers to optimize
BLAS implementations for speedy operation
on their hardware.

More than 40 years on, BLAS represents
the heart of the scientific computing stack,
the code that makes scientific software tick.
Lorena Barba, a mechanical and aerospace
engineer at George Washington University in
Washington DC, calls it “the machinery inside
five layers of code”.

Says Dongarra, “It provides the fabric on
which we do computing.”

Microscopy must-have:
NIH Image (1987)
In the early 1980s, programmer Wayne
Rasband was working with a brain-imaging
lab at the US National Institutes of Health in
Bethesda, Maryland. The team had a scanner
to digitize X-ray films, but no way to display or
analyse them on their computer. So Rasband
wrote a program to do just that.

The program was specifically designed for
a US$150,000 PDP-11 minicomputer — a rack-
mounted, decidedly non-personal computer.
Then, in 1987, Apple released its Macintosh II,
a friendlier and much more affordable option.
“It seemed obvious to me that that would work
a lot better as a kind of laboratory image anal-
ysis system,” Rasband says. He ported his soft-
ware to the new platform and rebranded it,
seeding an image-analysis ecosystem.

NIH Image and its descendants empowered
researchers to view and quantify just about any
image, on any computer. The software fam-
ily includes ImageJ, a Java-based version that
Rasband wrote for Windows and Linux users,
and Fiji, a distribution of ImageJ developed by
Pavel Tomancak’s group at the Max Planck Insti-
tute of Molecular Cell Biology and Genetics
in Dresden, Germany, that includes key plug-
ins. “ImageJ is certainly the most foundational
tool that we have,” says Beth Cimini, a compu-
tational biologist who works on the Imaging
Platform of the Broad Institute in Cambridge,
Massachusetts. “I’ve literally never spoken to
a biologist who has used a microscope but not
ImageJ or its offshoot project, Fiji.”

That’s partly because these tools are free,
Rasband says. But it’s also because it’s easy
for users to customize the tool to their needs,
says Kevin Eliceiri, a biomedical engineer at
the University of Wisconsin–Madison, whose
team has taken the lead on ImageJ develop-
ment since Rasband’s retirement. ImageJ
features a deceptively simple, minimalist
user interface that has remained largely
unchanged since the 1990s. Yet the tool is
infinitely extensible thanks to its built-in
macro recorder (which allows a user to
save workflows by recording sequences of
mouse clicks and menu selections), extensive
file-format compatibility and flexible plug-in
architecture. “Hundreds of people” have con-
tributed plug-ins, says Curtis Rueden, the
programming lead in Eliceiri’s group. These
additions have greatly expanded the tool-
set for researchers, with functions to track
objects over time in videos or automatically
identify cells, for instance.

“The point of the program isn’t to be the
be-all and end-all,” Eliceiri says, “it’s to serve
the purpose of its users. And unlike Photoshop
and other programs, ImageJ can be whatever
you want it to be.”

Sequence searcher:
BLAST (1990)
There might be no better indicator of cultural
relevance than for a software name to become
a verb. For search, think Google. And for
genetics, think BLAST.

Evolutionary changes are etched into molec-
ular sequences as substitutions, deletions,
gaps and rearrangements. By searching for
similarities between sequences — particularly
among proteins — researchers can discover
evolutionary relationships and gain insight
into gene function. The trick is to do so quickly
and comprehensively across rapidly balloon-
ing databases of molecular information.

Dayhoff provided one crucial piece of the
puzzle in 1978. She devised a ‘point accepted
mutation’ matrix that allowed researchers to
score the relatedness of two proteins based
not only on how similar their sequences
are, but also on the evolutionary distance
between them.

In 1985, William Pearson at the University of
Virginia in Charlottesville and David Lipman at
the NCBI introduced FASTP, an algorithm that
combined Dayhoff’s matrix with the ability to
perform rapid searches.

Years later, Lipman, along with Warren
Gish and Stephen Altschul at the NCBI, Webb
Miller at Pennsylvania State University in Uni-
versity Park, and Gene Myers at the University
of Arizona, Tucson, developed an even more
powerful refinement: the Basic Local Align-
ment Search Tool (BLAST). Released in 1990,
BLAST combined the search speed required to
handle fast-growing databases with the ability
to pick up matches that were more evolution-
arily distant. At the same time, the tool could
calculate how likely it is that those matches
occurred by chance.

The result was incredibly fast, Altschul
says. “You could put in your search, take one
sip of coffee, and your search would be done.”
But more importantly, it was easy to use. In
an era when databases were updated by
post, Gish established an e-mail system and
later a web-based architecture that allowed
users to run searches on the NCBI computers
remotely, thus ensuring their results were
always up-to-date.

The system gave the then-budding field
of genome biology a transformative tool,
says Sean Eddy, a computational biologist at
Harvard University in Cambridge, Massachu-
setts — a way to work out what unknown genes
might do on the basis of the genes they were
related to. And for sequencing labs every-
where, it provided a clever neologism: “It’s

A Cray-1 supercomputer at Lawrence Livermore National Laboratory in California in 1983.

SC
IE

N
C

E
H

IS
T

O
R

Y
 IM

A
G

ES
/A

LA
M

Y

Nature | Vol 589 | 21 January 2021 | 347

©

2021

Springer

Nature

Limited.

All

rights

reserved. ©

2021

Springer

Nature

Limited.

All

rights

reserved.

just one of these things that became a verb,”
Eddy says. “You just talked about BLASTing
your sequences.”

Preprint powerhouse:
arXiv.org (1991)
In the late 1980s, high-energy physicists rou-
tinely sent physical copies of their submitted
manuscripts to colleagues by post for com-
ment and as a courtesy — but only to a select
few. “Those lower in the food chain relied on
the beneficence of those on the A-list, and
aspiring researchers at non-elite institutions
were frequently out of the privileged loop
entirely,” wrote physicist Paul Ginsparg in
2011 (ref. 7).

In 1991, Ginsparg, then at Los Alamos
National Laboratory in New Mexico, wrote an
e-mail autoresponder to level the playing field.
Subscribers received daily lists of preprints,
each associated with an article identifier. With
a single e-mail, users across the world could
submit or retrieve an article from the lab’s
computer system, get lists of new articles or
search by author or title.

Ginsparg’s plan was to retain articles for three
months, and to limit content to the high-energy
physics community. But a colleague convinced
him to retain the articles indefinitely. “That was
the moment it transitioned from bulletin board
to archive,” he says. And papers flooded in from
much farther afield than Ginsparg’s own disci-
pline. In 1993, Ginsparg migrated the system to
the World Wide Web, and in 1998 he gave it the
name it goes by today: arXiv.org.

Now in its thirtieth year, arXiv houses some
1.8 million preprints — all available for free —
and attracts more than 15,000 submissions
and some 30 million downloads per month.
“It’s not hard to see why the arXiv is such a pop-
ular service,” the editors of Nature Photonics
wrote8 a decade ago on the occasion of the
site’s twentieth anniversary: “The system pro-
vides researchers with a fast and convenient
way to plant a flag that shows what they did and
when, avoiding the hassle and time required
for peer review at a conventional journal.”

The site’s success catalysed a boom in sis-
ter archives in biology, medicine, sociology
and other disciplines. The impact can be seen
today in tens of thousands of preprints that
have been published on the virus SARS-CoV-2.

“It’s gratifying to see a methodology,
considered heterodox outside of the
particle-physics community 30 years ago,

now more generally viewed as obvious and
natural,” Ginsparg says. “In that sense, it’s like
a successful research project.”

Data explorer:
IPython Notebook (2011)
Fernando Pérez was a graduate student “in
search of procrastination” in 2001 when
he decided to take on a core component of
Python.

Python is an interpreted language, which
means programs are executed line by line.
Programmers can use a kind of computational
call-and-response tool called a read–evaluate–
print loop (REPL), in which they type code and
a program called an interpreter executes it. A
REPL allows for quick exploration and iteration,
but Pérez noted that Python’s wasn’t built for
science. It didn’t allow users to easily preload
modules of code, for instance, or keep data visu-
alizations open. So Pérez wrote his own version.

The result was IPython, an ‘interactive’
Python interpreter that Pérez unveiled in
December 2001. A decade later, physicist
Brian Granger, working with Pérez and others,
migrated that tool to the web browser, launch-
ing the IPython Notebook and kick-starting a
data-science revolution.

Like other computational notebooks,
IPython Notebook combined code, results,
graphics and text in a single document. But
unlike other such projects, IPython Notebook
was open-source, inviting contributions from
a vast developer community. And it supported
Python, a popular language for scientists. In
2014, IPython evolved into Project Jupyter,
supporting some 100 languages and allowing
users to explore data on remote supercomput-
ers as easily as on their own laptops.

“For data scientists, Jupyter has emerged
as a de facto standard,” Nature wrote in 2018
(ref. 9). At the time, there were 2.5 million Jupy-
ter notebooks on the GitHub code-sharing
platform; today, there are nearly 10 million,
including the ones that document the 2016
discovery of gravitational waves and the 2019
imaging of a black hole. “That we made a small
contribution to those projects is extremely
rewarding,” Pérez says.

Fast learner:
AlexNet (2012)
Artificial intelligence (AI) comes in two
flavours. One uses codified rules, the other
enables a computer to ‘learn’ by emulating the

neural structure of the brain. For decades, says
Geoffrey Hinton, a computer scientist at the
University of Toronto, Canada, AI research-
ers dismissed the latter approach as “non-
sense”. In 2012, Hinton’s graduate students
Alex Krizhevsky and Ilya Sutskever proved
otherwise.

The venue was ImageNet, an annual com-
petition that challenges researchers to train
an AI on a database of one million images of
everyday objects, then test the resulting algo-
rithm on a separate image set. At the time,
the best algorithms miscategorized about
one-quarter of them, Hinton says. Krizhevsky
and Sutskever’s AlexNet, a ‘deep-learning’
algorithm based on neural networks, reduced
that error rate to 16% (ref. 10). “We basically
halved the error rate, or almost halved it,”
notes Hinton.

Hinton says the team’s success in 2012
reflected the combination of a big-enough
training data set, great programming and the
newly emergent power of graphical process-
ing units — the processors that were originally
designed to accelerate computer video per-
formance. “Suddenly we could run [the algo-
rithm] 30 times faster,” he says, “or learn on
30 times as much data.”

The real algorithmic breakthrough, Hinton
says, actually occurred three years earlier,
when his lab created a neural network that
could recognize speech more accurately than
could conventional AIs that had been refined
over decades. “It was only slightly better,” Hin-
ton says. “But already that was the writing on
the wall.”

Those victories heralded the rise of
deep learning in the lab, the clinic and
more. They’re why mobile phones are able
to understand spoken queries and why
image-analysis tools can readily pick out
cells in photo micrographs. And they are
why AlexNet takes its place among the many
tools that have fundamentally transformed
science, and with them, the world.

Jeffrey M. Perkel is technology editor at
Nature.

Take a survey at go.nature.com/10-computer-
codes to weigh in on our code selections.

1. The Event Horizon Telescope Collaboration et al.
Astrophys. J. Lett. 875, L1 (2019).

2. Braig, K., Adams, P. D. & Brünger, A. T. Nature Struct.
Biol. 2, 1083–1094 (1995).

3. Strasser, B. J. J. Hist. Biol. 43, 623–660 (2010).
4. Newmark, P. Nature 304, 108 (1983).
5. Manabe, S. & Bryan, K. J. Atmos. Sci. 26, 786–789 (1969).
6. Lawson, C. L., Hanson, R. J., Kincaid, D. R. & Krogh, F. T.

ACM Trans. Math. Software 5, 308–323 (1979).
7. Ginsparg, P. Preprint at http://arxiv.org/abs/1108.2700 (2011).
8. Nature Photon. 6, 1 (2012).
9. Nature 563, 145–146 (2018).
10. Krizhevsky, A., Sutskever, I. & Hinton, G. E. in Proc. 25th

Int. Conf. Neural Information Processing Systems (eds
Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. O.)
1097–1105 (Curran Associates, 2012).

The ImageJ tool can analyse microscope images and automatically identify cell nuclei, as here.

IG
N

A
C

IO
 A

R
G

A
N

D
A

-C
A

R
R

ER
A

S/
IM

A
G

EJ

Feature

348 | Nature | Vol 589 | 21 January 2021 | Corrected 21 January 2021 and 8 April 2021

©

2021

Springer

Nature

Limited.

All

rights

reserved. ©

2021

Springer

Nature

Limited.

All

rights

reserved.

Correction 21 January 2021
This Feature erroneously stated that Paul Gin-
sparg migrated an early version of the arXiv
preprint sharing system to the Internet. In
fact, he migrated it to the World Wide Web.

Correction 8 April 2021
This Feature erroneously gave the length
of an early version of the IPython program.
It also erred in its description of the devel-
opment team. The work was led by Brian
Granger, not Fernando Perez. And Evan Pat-
terson had a minor role compared with theirs.

Nature | Corrected 21 January 2021 and 19 March 2021

©

2021

Springer

Nature

Limited.

All

rights

reserved. ©

2021

Springer

Nature

Limited.

All

rights

reserved.

