
In 2015, bioinformatician Johannes Köster
was what he called “kind of a full-time
Python guy”. He had already written one
popular tool — the workflow manager
Snakemake — in the programming lan-

guage. Now he was contemplating a project
that required a level of computational perfor-
mance that Python simply couldn’t deliver. So
he began casting about for something new.

Köster, now at the University of
Duisburg-Essen in Germany, was looking for
a language that offered the “expressiveness”
of Python but the speed of languages such as C
and C++. In other words, “a high-performance
language that is still, let’s say, ergonomic to
use”, he explains. What he found was Rust.

First created in 2006 by Graydon Hoare as
a side project while working at browser-de-
veloper Mozilla, headquartered in Mountain
View, California, Rust blends the performance
of languages such as C++ with friendlier syn-
tax, a focus on code safety and a well-engi-
neered set of tools that simplify development.

Portions of Mozilla’s Firefox browser are
written in Rust, and developers at Microsoft
are reportedly using it to recode parts of
the Windows operating system. The annual
Stack Overflow Developer Survey, which this
year polled nearly 65,000 programmers, has
ranked Rust as the “most loved” programming
language for 5 years running. The code-shar-
ing site GitHub says Rust was the second-fast-
est-growing language on the platform in 2019,
up 235% from the previous year.

Scientists, too, are turning to Rust. Köster,
for instance, used it to create an application,
called Varlociraptor, that compares millions
of sequence reads against billions of genetic
bases to identify genomic variants. “This is

huge data,” he says. “So that needs to be as fast
as possible.” But that power comes at a cost:
the Rust learning curve is steep.

“It does take some up-front time,” says Carol
Nichols, a member of the Rust core team and
founder of the consultancy firm Integer 32 in
Pittsburgh, Pennsylvania. “But it has enabled
me to do things that I wouldn’t otherwise be
able to do. I see that time as well spent.”

Caution: no guide rails
Workflows for analysing scientific data tend to
use languages such as Python, R and Matlab.
These interpret lines of code one by one and
then execute them, a style of programming
that is good for exploring data, but not at
speed.

C and C++ are fast, but they have “no guide
rails”, says Ashley Hauck, a Rust programmer
(or ‘Rustacean’, as community members are
known) in Stockholm. For instance, there are
no controls that stop a C or C++ programmer
from inappropriately accessing memory that

WHY SCIENTISTS ARE
TURNING TO RUST
Despite having a steep learning curve, the programming
language offers speed and safety. By Jeffrey M. Perkel

“The tooling and
infrastructure around
Rust is really phenomenal.”

IL
LU

ST
R

A
T

IO
N

 B
Y

 T
H

E
P

R
O

JE
C

T
 T

W
IN

S

Nature | Vol 588 | 3 December 2020 | 185

Work / Technology & tools

©

2020

Springer

Nature

Limited.

All

rights

reserved.

has already been released back to the operat-
ing system, or to prevent the program from
releasing the same piece twice. In the best-case
scenario, this would cause the program to
crash. But it can also return meaningless data
or expose security vulnerabilities. According
to researchers at Microsoft, 70% of the security
bugs that the company fixes each year relate
to memory safety.

Memory rules
Rust’s model uses rules to assign each piece of
memory to a single owner and enforce who can
access it. Code that violates those rules never
gets the chance to crash — it won’t compile.
“They have a memory-management system
that is based on this concept of lifetimes that
lets the compiler track at compile-time when
memory is allocated, when it’s freed, who
owns it, who can access it,” explains Rob Patro,
a computational biologist at the University
of Maryland, College Park. “There’s an entire
large class of correctness errors that go away
simply by virtue of the way the language is
designed.”

The same guarantees help to ensure that
parallelized code — software written to run
on multiple processors — can run safely, for
instance by eliminating the possibility that
multiple computational threads will access
the same data at the same time.

The result is a language that is easier to main-
tain and debug, but harder to learn. “No other
mainstream languages really have these con-
cepts, and they’re really core to understanding
a lot of how you have to write code in Rust,”
Nichols says. Stephan Hügel, who studies the
visualization of geographical data at Trinity
College Dublin, estimates that he spent two
or three months porting a Python algorithm
for converting geospatial coordinates from
one reference system into another into Rust,

achieving fourfold faster execution. Richard
Apodaca, founder of the chem informatic-
software company Metamolecular in La Jolla,
California, says it took him about six months
to become proficient in the language.

Focus on usability
To compensate, Rust’s developers have
optimized the user experience, says Manish
Goregaokar, who leads the Rust develop-
er-tooling team and is based in Berkeley, Cal-
ifornia. For instance, the compiler produces
particularly informative error messages, even
highlighting offending code and suggesting
how to fix it. “If your language is going to intro-
duce a novel concept, it had better be pleasant
to work with,” Goregaokar explains.

The Rust community also provides exten-
sive documentation and online help, including
a popular online reference called the Book and
a ‘Cookbook’ of recipes for solving common
problems. Users praise the Rust toolchain —
the applications that programmers use to turn
code into applications (see ‘Let’s get oxidiz-
ing’). “The tooling and infrastructure around
Rust is really phenomenal,” Patro says. Unlike
the many compilers and ancillary utilities
that programmers use to build C code, Rus-
taceans can use a single tool, called Cargo, to
compile Rust code, run tests, auto-generate
documentation, upload a package to a repos-
itory and more. It also downloads and installs
third-party packages automatically. A Cargo
plug-in called Clippy flags common errors and
‘non-idiomatic’ Rust code, a feature that Patro
calls “absolutely phenomenal”.

There are Rust plug-ins for popular devel-
opment environments, such as Microsoft’s
Visual Studio Code and JetBrains’ IntelliJ, as
well as a Rust ‘playground’ that provides a
live, online Rust environment for code exper-
imentation. And David Lattimore, a software
developer in Sydney, Australia, created a ‘ker-
nel’ for using Rust in Jupyter computational
notebooks, as well as a Python-style interac-
tive environment called a REPL (read-evalu-
ate-print loop).

Aiding development is Rust’s ecosystem
of third-party packages, or ‘crates’, currently
numbering nearly 50,000 (see ‘Rust rising’).
These encapsulate algorithms in disciplines
such as bioinformatics (Köster’s Rust-Bio),
geosciences (the Geo-Rust project) and math-
ematics (nalgebra). Still, says Nichols, “that
could definitely tip the balance away from
Rust, if the libraries you need are just not in
Rust”. Programmers can sometimes bridge
that gap using Rust’s ‘foreign function inter-
face’, however.

Oxidized code
Coding logistics aside, what’s undeniable is
that Rust is fast. In May, bioinformatician Heng
Li at the Dana-Farber Cancer Institute in Bos-
ton, Massachusetts, tested multiple languages

on a computational-biology task that involved
parsing 5.7 million sequence records. Rust
edged out C to take the top spot. “When we
want to write a high-performance program
using multiple threads, and also if you need it
to be very fast and also compact in memory,
then Rust is the ideal choice,” Li says.

Luiz Irber, a bioinformatician at the Uni-
versity of California, Davis, used Rust to
recode (or ‘oxidize’, in Rust parlance) a tool
called Sourmash — which performs genomic
searches and taxonomic profiling — to ease
software maintenance, gain access to modern
language features and make the code work in
a web browser, he says.

Led by graduate student Hirak Sarkar, Patro’s
team used Rust to build a gene-expression
analysis tool called Terminus after team mem-
ber Avi Srivastava returned from an internship
at 10x Genomics, a biotechnology company
in Pleasanton, California, that uses Rust to
develop open-source tools. “The beauty of
Rust is, it makes the task of debugging very
easy, because memory management is much,
much better,” explains Srivastava, who is now
at the New York Genome Center.

But for many Rustaceans, the human ele-
ment is equally compelling. Hauck, a mem-
ber of the LGBT+ community, says that Rust
users have gone out of their way to make her
feel welcome. The community, she says, has
“always made an effort to be extremely inclu-
sive — like, very much aware of how diversity
impacts things; very aware of how to write
a code of conduct and enforce that code of
conduct”.

“That’s probably a majority of the reason I’m
still writing Rust,” Hauck says. “It’s because the
community is so fantastic.”

Jeffrey M. Perkel is technology editor at
Nature.

LET’S GET OXIDIZING
Here’s how to create a GenBank file
reader so you can explore some of the
features of Rust.

• Install Rust at www.rust-lang.org/learn/
get-started
• Clone the GitHub repository at https://
github.com/jperkel/gb_read
• Execute ‘cargo run’ from the command
line to download external dependencies
and build the application. By default,
the application parses the GenBank file
‘nc_005816.gb’ in the GitHub repository,
but you can specify an alternative input
file with ‘cargo run <filename>’
• Execute the included tests using
‘cargo test’.
• Create and view documentation with
‘cargo doc --open’.

RUST RISING
The Rust packages repository https://crates.io
has grown sharply since 2016, mirroring the
rapid uptake of the language.

2014
0

50

100

N
um

be
r o

f p
ac

ka
ge

s
(th

ou
sa

nd
s)

150

200

250

2016 2018 2020

CRAN
(R)

Crates.io
(Rust)

PyPI
(Python)

Missing
data

SO
U

R
C

E:
 H

T
T

P
:/

/W
W

W
.M

O
D

U
LE

C
O

U
N

T
S.

C
O

M

Work / Technology & tools

186 | Nature | Vol 588 | 3 December 2020 | Corrected 3 December 2020 | Corrected 11 December 2020

©

2020

Springer

Nature

Limited.

All

rights

reserved. ©

2020

Springer

Nature

Limited.

All

rights

reserved.

Correction
This Technology feature gave the wrong
source for the graphic entitled ‘Rust rising’.
The data came from http://www.module-
counts.com, not from https://crates.io. Also,
the story erred in stating that the Clippy
plug-in is a third-party component. Finally, it
erroneously stated that 70% of the bugs that
Microsoft fixed each year relate to memory
safety. In fact, it is 70% of the security bugs,
not all bugs.

Nature | Corrected 2 December 2020

©

2020

Springer

Nature

Limited.

All

rights

reserved. ©

2020

Springer

Nature

Limited.

All

rights

reserved.

