
STING occurs almost exclusively in bacteria 
lacking other signalling pathways that also 
involve 3′,3′ c-di-GMP, thereby avoiding this 
potential conflict.   

Human STING defends against viruses by 
relying on the expression of antiviral genes, 
such as those encoding interferon proteins, 
which have been identified only in vertebrates. 
However, bacterial CBASS systems instead 
fight viral infection by either arresting bac-
terial cell growth or inducing cell death to 
prevent further phage spread10. 

Morehouse et al. report that bacterial STING 
most commonly exists as a STING–TIR fusion 
protein that has a STING domain connected 
to a TIR domain, which is involved in plant and 
animal defence responses. The TIR domain 
is best known for its role in protein–protein 
interactions in mammalian defence pathways 
that are part of the innate immune response, 
which provides a broad defence against patho-
gens. Some TIR domains in plants and animals  
also have enzymatic activity13,14 that degrades 
the molecule NAD+, which is essential for 
cellular metabolism. 

The authors showed that the presence of 
3′,3′ c-di-GMP was sufficient to cause a bacte-
rial STING–TIR fusion protein to assemble into 
long filaments that rapidly degraded NAD+. 
This NAD+ destruction halted cell growth in 
the bacterium Escherichia coli. Mutation in the 
CDN binding site blocked the toxicity of the 
system in E. coli, suggesting that 3′,3′ c-di-GMP 
controls filament formation and NAD+ destruc-
tion mediated by the TIR domain.

STING–TIR fusion proteins are not lim-
ited to bacteria. Using a bioinformatics 
approach, Morehouse et al. identified such 
proteins in some invertebrates, including 
the Pacific oyster (Crassostrea gigas). Struc-
tural analysis of a STING–TIR fusion protein 
from C. gigas revealed that it binds tightly 
to 2′,3′-cGAMP, which is the CDN that most 
potently binds to and activates mammalian 
STING. Notably, in 2′,3′-cGAMP, the phospho-
diester bonds between the nucleotides guano-
sine monophosphate (GMP) and adenosine 
monophosphate (AMP) have an asymmetric 
pattern of linkages (a 2′–5′ linkage between 
the 2′-OH group of GMP and the 5′-phosphate 
group of AMP, and a 3′–5′ linkage between the 
3′-OH of AMP and 5′-phosphate of GMP). This 
arrangement is found in many multicellular 
animals, but not in bacteria, and suggests that 
the dominant ligand for STING changed after 
it was acquired by our animal ancestors. The 
reason for this change is unclear.

One unresolved question is how the bac-
terial cGAS–STING pathway is activated by 
phage infection. Morehouse et al. showed 
that, like many bacterial cGAS-like proteins5,15, 
purified CdnE protein is constitutively active 
in vitro. Therefore, it is possible that the active 
protein is normally inhibited and is released 
from inhibition only on phage infection. An  
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Hardware modelled on the brain could revolutionize 
computing, but implementing algorithms on such systems is 
a challenge. A proposed conceptual framework could simplify 
implementation, accelerating research in this field. See p.378 

example of this type of system is the cGAS-like 
enzyme DncV in the bacterium Vibrio cholerae, 
which is inhibited by metabolites (folate-like 
molecules) that are presumably depleted dur-
ing phage infection16. More research will be 
needed to determine whether this is how CdnE 
and other cGAS-like proteins are regulated, or 
if other regulatory mechanisms exist.  

As we learn more about the diverse and com-
plex defence systems in bacteria, it might be 
tempting to consider these immune systems 
as mirroring those of vertebrates. For exam-
ple, the CRISPR–Cas system used by organ-
isms such as bacteria can form what is akin to 
an immunological memory to fight specific 
phage reinfection. This shows echoes of our 
own adaptive immune systems, which can 
remember and respond to specific patho-
gens. Likewise, the bacterial CBASS systems, 
including the cGAS–STING pathway, provide 
broad protection against phage invasion, 
much as our own innate immune systems do. 
Interestingly, whereas the CRISPR–Cas system 
is absent in humans, and specialized immune 
cells called T and B cells instead do the job, 
the cGAS–STING pathway and its antiviral 
defence function are preserved from bacteria 
to humans. 
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The next generation of high-performance, low-
power computer systems might be inspired 
by the brain. However, as designers move 
away from conventional computer technol-
ogy towards brain-inspired (neuromorphic) 
systems, they must also move away from the 
established formal hierarchy that underpins 
conventional machines — that is, the abstract 
framework that broadly defines how soft-
ware is processed by a digital computer and 
converted into operations that run on the 
machine’s hardware. This hierarchy has helped 
enable the rapid growth in computer perfor-
mance. On page 378, Zhang et al.1 define a new 
hierarchy that formalizes the requirements 
of algorithms and their implementation on 
a range of neuromorphic systems, thereby 
laying the foundations for a structured 
approach to research in which algorithms and 

hardware for brain-inspired computers can be 
designed separately.

The performance of conventional digital 
computers has improved over the past 
50  years in accordance with Moore’s law, 
which states that technical advances will 
enable integrated circuits (microchips) to 
double their resources approximately every 
18–24 months. But although such advances 
enable ever-more-powerful hardware, they 
also create challenges for system architects 
looking to optimize the performance of algo-
rithms executed on these constantly changing 
devices. 

An important feature of conventional com-
puter design that has allowed the best perfor-
mance to be obtained from new devices (chips, 
memory, and so on) has been the absence of a 
tight coupling between software and hardware 
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development. By setting minimum require-
ments for hardware, it has become feasible 
to transform a software program written in a 
high-level language into the precisely equiv-
alent instruction sequence needed for any 
machine, a process known as compilation 
(Fig. 1). Computers that support the use of 
instructions representing fundamental  com-
putational operations in this compilation pro-
cess are said to be Turing complete. Software 
code is therefore generally written just once, 
and can then be compiled and executed on 
multiple Turing-complete processor archi-
tectures to produce equivalent results. 

However, it is widely acknowledged that 
the era of progress characterized by Moore’s 
law is coming to an end: rates of advance in 
digital-computer power seem to be slowing. 
Moreover, digital computing can be highly 
energy-consuming, prompting a search for 
alternatives. Scientists have long been fasci-
nated by the computational abilities of the 
brain, which is not only incredibly energy 
efficient, but also boasts unique informa-
tion-processing performance as a result of its 
architecture of neurons and synapses. This has 
inspired the field of neuromorphic computing, 
an area of research that uses the architecture 
of neural networks in the brain as the basis for 
next-generation computers2.

The focus of neuromorphic computing is 
typically on spiking neural networks — sys-
tems of interconnected artificial neurons in 
which each neuron exhibits a short ‘spike’ of 
activity when its level of activation reaches 
a threshold value3. Such systems are more 
similar to biological neural networks than 
are the artificial neural networks commonly 
used in modern deep-learning applications. 
Neuromorphic hardware has been produced 
in a range of formats, both digital and analog. 
However, most systems share common design 
principles, such as co-location of the memory 
and processor2. 

A challenge for researchers developing 
applications of neuromorphic hardware is that 
a formal hierarchy such as Turing complete-
ness does not currently exist. Instead, each 
new chip architecture requires a custom soft-
ware toolchain — a set of programming tools — 
that defines algorithms and executes them by 
mapping them onto the unique hardware. This 
makes it difficult to compare the performance 
of different neuromorphic systems executing 
the same algorithm, and requires researchers 
to understand all aspects of the algorithm and 
hardware to obtain the potentially brain-like 
performance. 

Zhang et al. now present a breakthrough 
solution to this problem by proposing a con-
cept that they call neuromorphic complete-
ness — which, in a nod to Turing completeness, 
aims to decouple algorithm and hardware 
development. In a relaxation of the hier archy 
for conventional computers, the authors 

propose that a brain-inspired system is neuro-
morphic complete if it can execute a given set 
of fundamental operations with a prescribed 
level of accuracy (Fig. 1). This is a deviation 
from Turing completeness, in which a system 
can be defined as complete only if it provides 
an exact and equivalent result for a given set 
of fundamental operations. 

Fundamental operations in the proposed 
neuromorphic-complete framework include 
two known as the weighted-sum operation and 
the element-wise rectified linear operation, 
which enable hardware systems to support 
both spiking and non-spiking artificial neu-
ral networks. The authors demonstrate how 
their hierarchy for brain-inspired computing 
provides a mechanism for converting a given 
algorithm into a form suitable for a range of 
neuromorphic-complete devices. 

A welcome feature of the new hierarchy 
is that a continuum of completeness is pro-
posed — different levels of algorithm perfor-
mance can be accepted, depending on the 
accuracy with which a neuromorphic system 
can execute the fundamental operations. 
This continuum of completeness means that 
the new hierarchy can be implemented using 
the whole range of available analog and dig-
ital neuromorphic systems, including those 
that sacrifice accuracy for execution speed 
or energy efficiency. 

The continuum of completeness also 
allows different implementations of an algo-
rithm to be run on the same hardware — for 

example, to explore how algorithm accuracy 
can be traded off against chip size to reduce 
power consumption. Zhang et al. demonstrate 
this aspect of their approach in the execution 
of algorithms for three tasks (‘driving’ an 
unmanned bicycle, simulating the movement 
of flocks of birds, and performing a linear alge-
bra analysis called QR decomposition). Each 
task was executed using three typical neuro-
morphic-complete hardware platforms: the 
authors’ own neuro morphic chip4; a graph-
ics-processing unit (GPU) used in conventional 
computers; and a platform, based on devices 
called memristors, that accelerates the execu-
tion of neural networks. 

The proposed hierarchy is a welcome step 
for the field, because it enables comparison of 
different hardware platforms implementing 
equivalent versions of the same algorithm, 
and comparison of different algorithms imple-
mented on the same hardware. These are both 
crucial tasks for effective benchmarking of 
neuromorphic architectures. The inclusion of 
conventional Turing-complete hardware (the 
GPU) in their proof-of-principle experiments is 
also extremely valuable, because this demon-
strates that the hierarchy could potentially be 
used to prove the superiority of neuromorphic 
devices over mainstream systems for certain 
applications. 

Another substantial benefit of the proposed 
hierarchy is its potential to split algorithm and 
hardware development into independent 
research streams. The scale and complexity 
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Figure 1 | Hierarchies for implementing algorithms on computer hardware. a, A computer hierarchy 
broadly defines how software is processed by modern digital computers. Algorithms written in a high-level 
computer language are broken down into fundamental computing operations to produce an intermediate 
representation of the software. These operations are converted into an exactly equivalent intermediate 
representation of hardware — a set of instructions that is then run on the hardware. Software can thus be 
developed separately from hardware. However, no similar hierarchy had been defined for neuromorphic 
computers (those that use networks of artificial neurons as the basis of their computations). b, Zhang et al.1 
now propose a similar hierarchy for neuromorphic computers, in which the intermediate representation of 
the hardware is only an approximation of the intermediate representation of the software — overcoming the 
difficulty of producing exact representations in neuromorphic systems. This hierarchy will allow hardware 
and software for neuromorphic computers to be developed separately, rather than being co-developed for 
each application, as they are now.
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Neural circuits in the brain rely on neuronal 
excitation (a positive change in the electrical 
potential across the cell membrane), com-
bined with delayed inhibition (Fig. 1). Inhibi-
tion is crucial for keeping neuronal activity in 
the optimal range for encoding information, 
minimizing the brain’s energy use and comput-
ing useful neuronal outputs. It has convention-
ally been thought that inhibition is mediated 
by a neuronal subtype called interneurons that 
release neuro transmitter molecules (such as 
the amino acid GABA) to make the membrane 
potential of the downstream neuron more 
negative — although neurotransmitter release 
from non-neuronal cells called astrocytes can 
also contribute1. On page 417, Badimon et al.2 
extend this repertoire of inhibitory influences 
to include microglia, the resident immune 
cells of the brain. The authors’ work raises  
fascinating questions about the role of micro-
glia in information processing.

Badimon and colleagues took advantage 
of the fact that blocking activation of the 
growth-factor receptor protein CSF1R in mice 
leads to a lack of microglia3. The authors found 
that if they gave neurostimulants to animals 
that lacked microglia, the drugs produced 
long-lasting epileptic seizures, indicative of 
hyperactive neuronal excitation. Seizures were 
not observed in wild-type animals receiving 
the same drugs, indicating that microglia 

normally exert a brake on neuronal activity. 
This result echoes and extends two previous 
studies4,5. Microglial processes are attracted to 
the cell bodies (housing the nucleus) of active 
neurons by the release of ATP molecules. 
There, the processes decrease neuronal 
activity, both normally4 and in pathological5 
conditions. 

Whereas these previous studies focused on 
cell bodies, Badimon and colleagues focused 

on the synaptic junctions between neurons, 
which also release ATP to attract microglial 
processes. The microglial enzyme CD39 con-
verts ATP into ADP (and then into AMP); ADP 
activates P2Y12 receptor proteins found only 
on microglia (go.nature.com/3iuewxa and go.
nature.com/33hwjft; Fig. 2). Blocking P2Y12 
receptors has been shown to inhibit the attrac-
tion of microglia to cell bodies and synapses5, 
and Badimon et al. found that such a block also 
reduces neuronal inhibition by microglia in 
response to neurostimulants. 

How might microglia–neuron interactions 
inhibit the electrical activity of neurons? 
The authors found that deleting microglia 
decreased extracellular levels of the molecule 
adenosine (ADO). Pharmacologically blocking 
CD39 or the downstream enzyme CD73 (which 
converts AMP into ADO; Fig. 2) also lowered 
ADO levels. Furthermore, blocking the activity 
of CD39 increased the susceptibility of mice 
to seizures in response to neurostimulants. 
Together, these observations implicate ADO 
as the microglia-derived factor that dampens 
neuronal activity. 

It is well known that ADO lowers neuronal 
excitability6. Indeed, the reason that coffee 
makes us more alert is that caffeine blocks 
ADO’s inhibitory effects. ADO lowers excita-
bility by acting on what are called A1 receptors, 
which (by lowering the concentration of the 
intracellular messenger molecule cyclic AMP) 
decrease the release of the excitatory neuro-
transmitter glutamate, and reduce its effects 
on the downstream neuron that receives the 
neurotransmitter. A1 receptors also activate 
potassium ion channels in neuronal mem-
branes to keep their membrane potential nega-
tive (and so keep the neurons unexcited). Thus, 
Badimon et al. have uncovered a previously 
unknown feedback loop for neuronal regu-
lation mediated by microglia, which, when 
attracted to active synapses, generate ADO 
to inhibit excessive neuronal activity (Fig. 2).
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Figure 1 | Inhibition of active neurons by microglial cells. a, A generic neuronal circuit, centred 
on a principal neuron (PN). The PN and an excitatory input to the circuit both release the excitatory 
neurotransmitter molecule glutamate (Glu). Interneurons (IN) release the inhibitory neurotransmitter 
GABA. Neurotransmitters derived from cells called astrocytes fine-tune the neuronal circuits (these signals 
are not shown). The circuit is also inhibited by the molecule adenosine (ADO), which Badimon et al.2 show 
is generated, in part, by microglial cells. b, When the input to the circuit is increased, GABA-mediated 
inhibition decreases the output on a rapid timescale. Microglia-derived ADO adds a slower component to 
the inhibition. 
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the brakes on neurons
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Microglia are the brain’s immune cells. A previously unknown 
role for microglia has now been uncovered: providing 
negative feedback to active neurons, to help the brain process 
information. See p.417

of algorithms will need to increase over time if 
the benefits of the underlying neuro morphic 
architectures are to be obtained, and so this 
split will help researchers to focus on specific 
aspects of research problems, rather than try-
ing to find entire end-to-end solutions. This is 
likely to result in better understanding of the 
problems, and feed into the design of high-
er-performing neuromorphic systems in the 
future.  

There is still much to be done to unite the 
work carried out by the many industrial and 
academic research groups in the field of 
neuro morphic computing. Zhang and col-
leagues’ proposed hierarchy is a useful step 
in this direction. It remains to be seen whether 

actual brains — biological ‘hardware’ — are 
themselves neuromorphic complete, but 
the authors’ approach nevertheless brings us 
closer to the great gains that could be made 
using brain-inspired hardware.
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