
In research, time and resources are pre-
cious. Automating common tasks, such
as data collection, can make a project
efficient and repeatable, leading in turn
to increased productivity and output. You

will end up with a shareable and reproducible
method for data collection that can be veri-
fied, used and expanded on by others — in
other words, a computationally reproducible
data-collection workflow.

In a current project, we are analysing
coroners’ reports to help to prevent future
deaths. It has required downloading more
than 3,000 PDFs to search for opioid-re-
lated deaths, a huge data-collection task. In
discussion with the larger team, we decided
that this task was a good candidate for auto-
mation. With a few days of work, we were
able to write a computer program that could

quickly, efficiently and reproducibly collect all
the PDFs and create a spreadsheet that docu-
mented each case.

Such a tool is called a ‘web scraper’, and our
group employs them regularly. We use them
to collect information from clinical-trial reg-
istries, and to enrich our OpenPrescribing.net
data set, which tracks primary-care prescrib-
ing in England — tasks that would range from
annoying to impossible without the help of
some relatively simple code.

In the case of our coroner-reports project,
we could manually screen and save about
25 case reports every hour. Now, our program
can save more than 1,000 cases per hour while
we work on other things, a 40-fold time sav-
ing. It also opens up opportunities for collab-
oration, because we can share the resulting
database. And we can keep that database up to

date by re-running our program as new PDFs
are posted.

How does scraping work?
Web scrapers are computer programs that
extract information from — that is, ‘scrape’ —
web sites. The structure and content of a web
page are encoded in Hypertext Markup Lan-
guage (HTML), which you can see using your
browser’s ‘view source’ or ‘inspect element’
function. A scraper understands HTML, and
is able to parse and extract information from
it. For example, you can program your scraper
to extract specific fields of information from
an online table or download documents linked
on the page.

A common scraping task involves iterating
over every possible URL from www.example.
com/data/1 to www.example.com/data/100

TOOLS THAT EASE DATA
COLLECTION FROM THE WEB
Custom web scrapers are driving research — and collaborations.
By Nicholas J. DeVito, Georgia C. Richards and Peter Inglesby

SH
U

T
T

ER
ST

O
C

K

Nature | Vol 585 | 24 September 2020 | 621

Advice, technology and tools

Work Send your careers story
to: naturecareerseditor
@nature.com

Your
story

©

2020

Springer

Nature

Limited.

All

rights

reserved.

(sometimes called ‘crawling’) and storing what
you need from each page without the risk of
human error during extraction. Once your pro-
gram is written, you can recapture these data
whenever you need to, assuming the structure
of the website stays mostly the same.

How do I get started?
Not all scraping tasks require programming.
When you visit a web page in your browser,
off-the-shelf browser extensions such as web-
scraper.io let you click on the elements of the
page that contain the data that you’re inter-
ested in. They can then automatically parse
the relevant parts of the HTML and export the
data as a spreadsheet.

The alternative is to build your own scraper
— a more difficult process, but one that offers
greater control. We use Python, but any mod-
ern programming language should work. (For
specific packages, Requests and Beautiful-
Soup work well together in Python; for R, try
rvest.) It’s worth checking whether anyone
else has already written a scraper for your data
source. If not, there’s no shortage of resources
and free tutorials to help you to get started no
matter your preferred language.

As with most programming projects, there
will be some trial and error, and different web-
sites might use different data structures or
variations in how their HTML is implemented
that will require tweaks to your approach. Yet
this problem-solving aspect of development
can be quite rewarding. As you get more com-
fortable with the process, overcoming these
barriers will start to seem like second nature.

But be advised: depending on the number
of pages, your Internet connection and the
website’s server, a scraping job could still
take days. If you have access and know-how,
running your code on a private server can help.
On a personal computer, make sure to prevent
your computer from sleeping, which will dis-
rupt the Internet connection. Also, think care-
fully about how your scraper can fail. Ideally,
you should have a way to log failures so that
you know what worked, what didn’t and where
to investigate further.

Things to consider
Can you get the data an easier way? Scraping
all 300,000+ records off of ClinicalTrials.
gov every day would be a massive job for our
FDAAA TrialsTracker project. Luckily, Clini-
calTrials.gov makes their full dataset available
for download; our software simply grabs that
file once per day. We weren’t so lucky with the
data for our EU TrialsTracker, so we scrape the
EU registry monthly.

If there’s no bulk download available, check
to see whether the website has an application
programming interface (API). An API lets soft-
ware interact with a website’s data directly,
rather than requesting the HTML. This can
be much less burdensome than scraping

individual web pages, but there might be a fee
associated with API access (see, for example,
Google’s Map API). In our work, the PubMed
API is often useful. Alternatively, check
whether the website operators can provide
the data to you directly.

Can this website be scraped? Some websites
don’t make their data available directly in the
HTML and might require some more advanced
techniques (check resources such as Stack-
Overflow for help with specific questions).
Other websites include protections like cap-
tchas and anti-denial-of-service (DoS) meas-
ures that can make scraping difficult. A few
websites simply don’t want to be scraped and
are built to discourage it. It’s also common to
allow scraping but only if you follow certain
rules, usually codified in a robots.txt file.

Are you being a courteous scraper? Every
time your program requests data from a web-
site, the underlying information needs to be
‘served’ to you. You can only move so quickly
in a browser, but a scraper could potentially
send hundreds to thousands of requests per
minute. Hammering a web server like that
can slow, or entirely bring down, the website
(essentially performing an unintentional DoS
attack). This could get you temporarily, or
even permanently, blocked from the website
— and you should take care to minimize the
chances of harm. For instance, you can pause
your program for a few seconds between each
request. (Check the site’s robots.txt file to see
whether it specifies a desired pause length.)

Are the data restricted? Be sure to check
for licensing or copyright restrictions on
the extracted data. You might be able to use
what you scrape, but it’s worth checking that
you can also legally share it. Ideally, the web-
site content licence will be readily available.
Whether or not you can share the data, you
should share your code using services such
as GitHub — this is good open-science practice
and ensures that others can discover, repeat
and build on what you’ve done.

We strongly feel that more researchers
should be developing code to help conduct
their research, and then sharing it with the
community. If manual data collection has
been an issue for your project, a web scraper
could be the perfect solution and a great
beginner coding project. Scrapers are com-
plex enough to teach important lessons about
software development, but common and
well-documented enough that beginners can
feel confident experimenting. Writing some
relatively simple code on your computer and
having it interact with the outside world can
feel like a research superpower. What are you
waiting for?

Nicholas J. DeVito and Georgia C. Richards
are doctoral candidates and researchers and
Peter Inglesby is a software engineer, at the
EBM DataLab at the University of Oxford, UK.

622 | Nature | Vol 585 | 24 September 2020

Work / Careers

What matters
in science
and why –
free in your
inbox every
weekday.

The best from Nature’s
journalists and other
publications worldwide.
Always balanced, never
oversimpli� ed, and
crafted with the scienti� c
community in mind.

A80371

SIGN UP NOW
go.nature.com/brie� ng

©

2020

Springer

Nature

Limited.

All

rights

reserved.

