
What Nicolas Rougier needed was a
disk. Not a pocket-sized terabyte
hard drive, not a compact disc —
an actual floppy disk.

For those who missed the 1980s,
the original floppy disk was a flexible, flimsy
disk inside a square sleeve with a hole in the
centre and a notch in the corner, and a couple
of hundred kilobytes of storage. In the 1983
cold-war film War Games, high-school hacker
David Lightman uses one to break into the
school’s computer and give his girlfriend top
marks in biology; he later hacks into a military
network, narrowly averting a global thermo-
nuclear war. Rougier’s need was more prosaic.
He just wanted to transfer a text file from his
desktop Mac to a relic of the computational
palaeolithic: a vintage Apple II, the company’s

first consumer product, introduced in 1977.
Rougier is a computational neuroscientist

and programmer at INRIA, the French National
Institute for Research in Digital Science and
Technology in Bordeaux. That file transfer
marked the final stage of his picking up a com-
putational gauntlet he himself threw down:
the Ten Years Reproducibility Challenge.
Conceived in 2019 together with Konrad
Hinsen, a theoretical biophysicist at the French
National Centre for Scientific Research (CNRS)
in Orléans, the challenge dares scientists to
find and re-execute old code, to reproduce
computationally driven papers they had pub-
lished ten or more years earlier. Participants
were supposed to discuss what they learnt at
a workshop in Bordeaux in June, but COVID-19
scuppered those plans. (The event has been

tentatively rescheduled for June 2021.)
Although computation plays a key and ever-

larger part in science, scientific articles rarely
include their underlying code, Rougier says.
Even when they do, it can be difficult for others
to execute it, and even the original authors
might encounter problems some time later.
Programming languages evolve, as do the
computing environments in which they run,
and code that works flawlessly one day can
fail the next.

In 2015, Rougier and Hinsen launched
ReScience C, a journal that documents
researchers’ attempts to replicate computa-
tional methods published by other authors,
based only on the original articles and their
own freshly written open-source code. Review-
ers then vet the code to ensure it works. But

THE DIGITAL
ARCHAEOLOGISTS
A computational challenge dares scientists to revive and
run their own decades-old code. By Jeffrey M. Perkel

IL
LU

ST
R

A
T

IO
N

 B
Y

 T
H

E
P

R
O

JE
C

T
 T

W
IN

S

656  |  Nature  |  Vol 584  |  27 August 2020

Work / Technology & tools

©

2020

Springer

Nature

Limited.

All

rights

reserved. ©

2020

Springer

Nature

Limited.

All

rights

reserved.

even under those idealized circumstances —
with reproducibility-minded authors, compu-
tationally savvy reviewers and fresh code — the
process can prove difficult.

The Ten Years Reproducibility Challenge
aims “to find out which of the ten-year-old
techniques for writing and publishing code are
good enough to make it work a decade later”,
Hinsen says. It was timed to coincide with the
1 January 2020 ‘sunset’ date for Python 2, a pop-
ular language in the scientific community, after
20 years of support. (Development continues
in Python 3, launched in 2008, but the two
versions are sufficiently different that code
written in one might not work in the other.)

“Ten years is a very, very, very, very long time
in the software world,” says Victoria Stodden,
who studies computational reproducibility at
the University of Illinois at Urbana-Champaign.
In establishing that benchmark, she says, the
challenge effectively encourages researchers
to probe the limitations of code reproducibil-
ity over a period that “is roughly equivalent in
the software world to infinity”.

The challenge had 35 entrants. Of the
43 articles they proposed reproducing, 28
resulted in reproducibility reports. ReScience C
began publishing their work earlier this year.
The programming languages used ranged
from C and R to Mathematica and Pascal; one
participant reproduced not code but a molecu-
lar model, encoded in Systems Biology Markup
Language (SBML).

Akin to archaeological digs for the digital
age, participants’ experiences also suggest
strategies for maximizing code reusability
in the future. One common thread is that
reproducibility-minded scientists need to up
their documentation game. “In 2002, I felt like I
would just remember everything forever,” says
Karl Broman, a biostatistician at the University
of Wisconsin, Madison. “It was only later that
it became clear that you start to forget things
within a month.”

We redo science
Rougier’s entry reproduces the oldest code
in the challenge1, an image magnifier for
the Apple II that he wrote aged 16 and pub-
lished in a now-defunct French hobbyist’s
magazine called Tremplin Micro. (The oldest
scientific code in the challenge, described
in an as-yet-unpublished paper submitted
to ReScience C, was a 28-year-old program
written in Pascal for visualizing water-qual-
ity data.) Thirty-two years later, Rougier no
longer remembers precisely how the code,
with its arcane AppleSoft BASIC instructions,
works — “which is weird, because I wrote it”. But
he was able to find it online and make it run on
a web-based Apple II emulator. That, he says,
was the easy bit; the hard bit was running it on
an actual Apple II.

The hardware wasn’t the problem — Rougier
had an Apple II in his office, salvaged when a

colleague was cleaning out their office. “For
the younger people it’s, ‘oh, what’s this?’,” he
says. “So you explain, ‘this is a computer’. And
for older people, it’s, ‘oh, yeah, I remember this
machine’.” But because the Apple II pre-dates
both USB cables and the Internet — and because
modern computers cannot directly talk to old
disk drives — Rougier needed some custom
hardware, not to mention a box of vintage flop-
pies, to allow the computer to load the code.
Those he found on Amazon, marked ‘new’ but
dating from 1993. After triple-writing his data
to ensure the bits were stable, the disks worked.

Bruno Levy, a computer scientist and
director of an INRIA research centre in Nancy,
reviewed Rougier’s write-up. Levy also has
an Apple II, and posted a short video of the
result to Twitter. With a sturdy ‘click clack’ at
the old-school keyboard, he calls up the code

and runs it, a stylized “We redo science!” screen
rendering slowly in monochromatic green.

Extinct hardware, dead languages
When Charles Robert, a biophysical chemist at
the CNRS in Paris, learnt about the challenge,
he decided to use it to revisit a research topic
he hadn’t looked at in years. “It gave me an
additional kind of kick to get going in that
direction again,” he says.

In 1995, Robert was modelling the
three-dimensional structure of eukaryotic
chromosomes in computational notebooks
running Mathematica, a commercial package.
Robert has Mathematica on his MacBook, but
for fun, he spent €100 (US$110) on a Raspberry
Pi, a single-board hobbyist computer that runs
Linux and has Mathematica 12 pre-installed.

Robert’s code ran largely without issue but
exposed difficulties2 that can arise with com-
putational notebooks, such as deficiencies in
code organization and code fragments that
are run out of order. Today, Robert circum-
vents these problems by breaking his code into
modules and implementing code tests. He also
uses version control to track changes to his
code and notes which version of his software
produced each set of results. “When I look at
some of my old code, I cringe sometimes and
think how I would do it better now,” he says.
“But I also think that process helped to lock in
some of the lessons I’ve picked up since then.”

Robert’s success in the challenge is typical:
only two of the 13 reproducibility write-ups
published so far document failed attempts.
One was from Hinsen, who was stymied by
the magnetic tapes on which he methodically
stored his code in the early 1990s3. “That’s the

problem of actually making backups but not
checking that you can still read your backups
ten years later,” he says. “At some point you
have this nice magnetic tape with a backup,
and no reader for it any more.” (Hinsen also
published a successful attempt.4) Other
researchers who failed to complete the chal-
lenge blamed a lack of time, especially in light
of the pandemic.

Another common issue that participants
faced was that of obsolete computing
environments. In 1996, Sabino Maggi, now a
computational physicist at the Italian National
Research Council’s Institute of Atmospheric
Pollution Research in Bari, used the computer
language Fortran to model a superconducting
device called a Josephson junction, processing
the results with Microsoft Visual Basic.
Fortran has changed little in the intervening
years, so after a few tweaks Maggi’s code
compiled without issue. Visual Basic posed a
bigger problem.

“Visual Basic,” Maggi writes in his report5,
“is a dead language and long since has been
replaced by Visual Basic.NET, which shares
only the name with its forefather.” To run it,
he had to recreate a decades-old Windows vir-
tual computer on his Mac. He loaded it with
Microsoft DOS 6.22 and Windows 3.11 (both
from around 1994) as well as Visual Basic, using
installation disks he found online. “Even after
so many years, the legitimacy of installing
proprietary software in an emulator might
be questionable,” Maggi concedes. But as he
had valid licences for these tools at the time of
his original research, he says, he felt “at least
morally authorized” to use them.

But which version of Visual Basic to try?
Microsoft released multiple versions of the
language over the years, which were not always
backwards-compatible. Maggi could no longer
recall which version he was using in 1996, and
a basement water leak had destroyed the
old notebooks in which he had logged those
details. “I had to start from scratch,” he says.

Ludovic Courtès, a research engineer at
INRIA in Bordeaux, reproduced a 2006 study
comparing different data-compression strat-
egies, whose code was written in C (ref. 6). But
changes to the application programming
interfaces (APIs) that programmers rely on
prevented his code from compiling using
current software libraries. “Everything has
been evolving — except, of course, some of
the pieces of software that were used for the
paper,” he says. He ended up having to roll back
half a dozen computational components to
older versions — a ‘downgrade cascade’. “It’s
a bit of a rabbit hole,” he says.

Today, researchers can use Docker
containers (see also ref. 7) and Conda virtual
environments (see also ref. 8) to package
computational environments for reuse. But
several participants chose an alternative
that, Courtès suggests, “could very much

“Researchers probe the
limits of code reproducibility
over a period that ‘is roughly
equivalent to infinity’.”

Nature  |  Vol 584  |  27 August 2020  |  657

©

2020

Springer

Nature

Limited.

All

rights

reserved. ©

2020

Springer

Nature

Limited.

All

rights

reserved.

represent the ‘gold standard’ of reproducible
scientific articles”: a Linux package manager
called Guix. It promises environments that are
reproducible down to the last bit, and trans-
parent in terms of the version of the code from
which they are built. “The environment and
indeed the whole paper can be inspected and
can be built from source code,” he says. Hinsen
calls it “probably the best thing we have right
now for reproducible research”.

Documentation needed
In his reproducibility attempt9, Roberto
DiCosmo, a computer scientist at INRIA and
the University of Paris, highlighted another
common difficulty for challenge participants:
locating their code in the first place. DiCosmo
tackled a 1998 paper that described a parallel
programming system called OcamlP3l. He
searched his hard disk and back-ups, and asked
his 1998 collaborator to do likewise, but came
up empty. Then he searched Software Herit-
age, a service DiCosmo himself had founded in
2015. “There it was, incredible,” he says.

Software Heritage regularly crawls
code-sharing sites such as GitHub, doing for
source code what the Internet Archive does for
web pages. Developers can also request that
the service archive their repositories, and the
challenge rules required participants to do so.
DiCosmo didn’t start his search at Software
Heritage, because the service did not exist
when he developed OcamlP3l. Somebody
must have posted his code to the now-extinct
repository Gitorious; Software Heritage
archived the site before it shut down, bringing
OcamlP3l along for the ride.

Of course, finding the code doesn’t mean it’s
obvious how to use it. Broman, for instance,
reports that missing documentation and
“quirky” file organization meant he had dif-
ficulty working out exactly which code he
needed to run to reproduce his 2003 study10.
“And so I had to resort to actually reading the
original article,” he writes.

“It’s not unusual for the number of lines of
documentation [in well-organized programs]
to actually exceed your code,” says Karthik
Ram, a computational-reproducibility advo-
cate at the University of California, Berkeley.
“Having as much of that in there, and then
having a broader description of how the anal-
ysis is structured, where the data come from,
some metadata about the data and then about
the code, is kind of key.”

Melanie Stefan, a neuroscientist at the
University of Edinburgh, UK, used the
challenge to assess the reproducibility of
her computational models, written in SBML.
Although the models were where she expected

them to be, she could not find the values she
had used for parameters such as molecular
concentrations. Also not well documented
were key details of data normalization. As a
result, Stefan was unable to reproduce part of
her study. “Even things that are kind of obvi-
ous at the time that you work on a model are
no longer obvious, even to the same people,
10 or 12 years later — surprise!” she deadpans.

Reproducibility spectrum
Stefan’s experience galvanized her to initiate
laboratory-wide policies focusing on docu-
mentation — for instance, supplementing
models with files that say, “to reproduce figure
5, this is exactly what you need to do”.

But developing such resources takes time,
Stodden notes. Cleaning and documenting
code, creating test suites, archiving data
sets, reproducing computational environ-
ments — “that’s not something that’s turnkey”.
Researchers have few incentives to do those

things, she adds, and there’s scant consensus
in the scientific community on what a repro-
ducible article should even look like. To
complicate matters, computational systems
continue to evolve, and it’s hard to predict
which strategies will endure.

Reproducibility is a spectrum, notes
Carole Goble, a computer scientist and
reproducibility advocate at the University
of Manchester, UK. It ranges from scientists
repeating their own analyses, to peer review-
ers test-driving code to show that it works, to
researchers applying published algorithms
to fresh data. If nothing else, Goble says,
release your source code, so that in future,
others can browse it and rewrite it as needed
— “reproducibility-by-reading”, as Goble calls
it. “Software is a living thing,” she says. “And if
it’s living it will eventually decay, and you will
have to repair it, and you’ll have to replace it.”

Counter-intuitively, many challenge
participants found that code written in older
languages was actually the easiest to reuse.
Newer languages’ rapidly evolving APIs and
reliance on third-party libraries make them
vulnerable to breaking. In that sense, the sun-
setting of Python 2.7 at the start of this year
represents an opportunity for scientists,
Rougier and Hinsen note. Python 2.7 puts
“at our disposal an advanced programming
language that is guaranteed not to evolve
anymore”, Rougier writes1.

Whichever language and reproducibility
strategies they use, researchers would be wise
to put them to the test, says Anna Krystalli, a
research software engineer at the University
of Sheffield, UK. Krystalli runs workshops
called ReproHacks for researchers to submit
their own published papers, code and data,
and challenge participants to reproduce it.
Often, she says, they cannot: crucial details,
obvious to the authors but opaque to others,
are missing. “All the materials that we’re pro-
ducing, if we don’t actually use them or engage
with them then we don’t really know if they are
reproducible,” Krystalli says. “It’s much harder,
actually, than people think.”

Jeffrey M. Perkel is technology editor for
Nature.

1.	 Rougier, N. P. ReScience C https://doi.org/10.5281/
zenodo.3886628 (2020).

2.	 Robert, C. H. ReScience C https://doi.org/10.5281/
zenodo.3886412 (2020).

3.	 Hinsen, K. ReScience C https://doi.org/10.5281/
zenodo.3889694 (2020).

4.	 Hinsen, K. ReScience C https://doi.org/10.5281/
zenodo.3886447 (2020).

5.	 Maggi, S. ReScience C https://doi.org/10.5281/
zenodo.3922195 (2020). 

6.	 Courtès, L. ReScience C https://doi.org/10.5281/
zenodo.3886739 (2020).

7.	 Nature 575, 247–248 (2019).
8.	 Nature 573, 149–150 (2019).
9.	 Di Cosmo, R. & Danelutto, M. ReScience C https://doi.

org/10.5281/zenodo.3947641 (2020).
10.	 Broman, K. W. ReScience C https://doi.org/10.5281/

zenodo.3959516 (2020).

A Mac emulating a 1994 Windows computer to run Microsoft Visual Basic.

“Software is a living thing.
And if it’s living it will
eventually decay, and you
will have to repair it.”

SA
B

IN
O

 M
A

G
G

I

658  |  Nature  |  Vol 584  |  27 August 2020

Work / Technology & tools

©

2020

Springer

Nature

Limited.

All

rights

reserved.

