
There is something comforting in the 
elegance of a chemical reaction. Inputs 
and conditions on one side of the 
reaction predictably yield a defined set 
of products on the other. But this pre-

dictability is quickly lost in complex biological 
systems, where thousands of reactions occur 
in parallel among vast numbers of interacting 
cells. 

Consider the human gut microbiome, in 
which roughly 1,000 bacterial species compete 
and collaborate while communicating with 
their host. This crosstalk rapidly becomes too 
complex to capture in a diagram. But under-
standing these communities is crucial, because 
their biological activity directly affects our 
health and susceptibility to disease. 

Now, systems biologists are building models 
to illuminate these black boxes. “The old-school 
way of looking at hundreds of thousands of 

reactions is just not feasible, and not desirable 
either,” says Ines Thiele, a microbiome 
researcher at the National University of Ireland 
in Galway. “But we have techniques now that try 
to help us see what’s happening much quicker 
and tackle the emergent complexity that arises.” 

Thiele and her colleagues are developing 
mathematical and statistical approaches 
that use a range of data, from areas such as 
genomics and biochemistry, to reconstruct 
highly diverse gut microbial communities com-
putationally. They capture only a fraction of the 
complex biological reality of the microbiome, 
but can reveal interactions between microbes 
and their hosts that would be near-impossible 
to detect otherwise. 

Polished GEMs
For many modelling efforts, the starting point 
is a genome-scale metabolic model (GEM). 

THE MICROBIOME 
MODELLERS
Computational approaches can reconstruct the 
complex interactions between gut bacteria and 
their human hosts. By Michael Eisenstein

Constructed by scanning an organism’s 
genome to determine the biochemical 
processes it can perform, GEMs are essentially 
blueprints of the enzymatic assembly lines in 
every microbe. “They’re capturing all of the 
metabolic capabilities that the cell has,” says 
Jens Nielsen, a systems biologist at Chalmers 
University of Technology in Gothenburg, 
Sweden. Researchers can then mathematically 
model how these inputs and outputs feed into 
one another.

This approach is particularly powerful for 
studying the gut, the microbes of which are 
often difficult to cultivate in the laboratory. 
Researchers can also draw on existing 
biological knowledge to extrapolate the 
possible function of a gene using sequence 
similarities with known enzymes, for instance. 
Even sparse information can be useful. 
Systems microbiologist Karsten Zengler at 
the University of California, San Diego, and his 
colleagues, for example, developed a GEM for 
a relatively under-studied species of marine 
diatom (a type of plankton), even though 
functions had been identified for only about 
one-tenth of its genome1. “Surprisingly, it 
worked,” Zengler says. “We have enough infor-
mation about metabolism to understand what 
they’re doing.” His team’s modelling approach 
assigned functions to more than 1,000 diatom 
genes, which collectively perform nearly 
4,500 interconnected biochemical reactions, 
and predicted where in the cells these 
reactions are likely to occur. 

A genome-scale metabolic model of yeast. Each coloured sphere represents a substance that the organism uses in metabolism.
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Currently, most microbiome samples are 
studied by isolating total DNA from a microbial 
community and breaking it into small pieces 
for sequencing, a strategy called shotgun 
metagenomics. The resulting data sets can 
provide an inventory of the species present in 
a sample without needing to culture or isolate 
them. Researchers can combine GEMs to flesh 
out larger microbial community models, and 
identify patterns of enzymatic activity on the 
basis of genes uncovered in the data. They can 
then thread these processes together to under-
stand which chemicals the particular system is 
taking up, which products are being released, 
and which cells are interacting to drive these 
processes. “You get non-obvious relationships 
between the microbes that you would just 
not see by looking at genome sequences 
themselves,” says Thiele. 

In one study2, Zengler’s group modelled 
the dynamic interplay between the alga 
Chlorella vulgaris and the yeast Saccharomyces 
cerevisiae, uncovering unexpectedly high levels 
of exchange between the two species for certain 
amino acids. Experimental profiling of metab-
olites in the sample might have overlooked this 
exchange, says Zengler, who offers the analogy 
of trying to infer children’s snack preferences 
by what’s left on the table after a birthday party. 
“You might observe the table and say, ‘Look at 
all those apples — that’s what children must like 
to eat.’ But that is not the case.” 

Not all interactions can be modelled: it’s 
currently impractical to capture the full 
interplay between all reactions from every cell 
at the same time. As a result, these models are 
often best suited for testing existing hypoth-
eses, says Joao Xavier, a systems biologist at 
the Memorial Sloan Kettering Cancer Center 
in New York City. “For example, we have several 
hypotheses about the role of fermentative 

bacteria that produce short-chain fatty-acid 
compounds, such as butyrate, that are 
associated with intestinal health,” he says. “So 
we could try to look for genes that belong to 
those pathways.” Xavier’s approach draws on 
principles used in conventional ecological 
modelling — for example, equations used 
for studying predator–prey interactions 
that capture how changes in one population 
can affect another. His group then uses 
machine-learning techniques to model these 
effects in more complex microbial systems. 

But even seemingly simple interactions 
can hide complexity. Consider the straight-
forward example of one microbe producing 
a carbohydrate that another microbe likes 

to eat. Changes in both the composition of a 
community and its environmental conditions 
can influence interactions between species, 
Zengler notes, citing his yeast–algae study. “In 
one condition, they loved each other and were 
best buddies and exchanged everything and 
grew happily together — better than they did by 
themselves,” he says. But something as simple 
as changing ammonia levels could make them 
more adversarial. “This relationship just got 
worse and worse, and at one point they ended 
up having a ‘divorce’ and fighting over their 
belongings.” 

Just part of the picture
Models can reliably draw such inferences only 
if they have good underlying data. But those 
can be difficult to get. The gene databases 

that researchers use to deduce enzymatic 
function and other biological activities are 
still incomplete, and even well-characterized 
species can hold surprises. In an effort to 
improve his group’s metabolic models, Nielsen 
tested how well S. cerevisiae grew on different 
carbon-based nutrients3. “We found it used 
many carbon sources that we were not taking 
into account even in our most state-of-the-art 
models,” he says. 

Models of the microbiome in the human gut 
might also overlook crucial aspects of the host 
environment, such as the physical structure 
of the large intestine — a lengthy organ with 
a bacterial composition that varies from one 
section to the next. “The geometry of the gut 
is quite complicated”, as are the mechanics 
of faecal matter travelling through it, says 
Xavier. There is also extensive communication 
between the host and microbiome, both at the 
intestinal barrier and through chemical signals 
that the intestinal cells subsequently relay 
throughout the body. 

Researchers can indirectly measure the 
impact of such interactions using samples of 
blood, urine or cerebrospinal fluid. Thiele has 
been developing a ‘virtual metabolic human’ 
that can integrate these and other data with 
microbiome models to create a more holistic 
picture of these interactions in various disease 
states. “We now have about 30 organs or 
tissues, arranged in an anatomically accurate 
manner,” she says. Her group is using those 
models to search for microbial perturbations 
that might contribute to disorders such as 
Parkinson’s disease. 

Xavier’s group is collaborating with clinicians 
to understand how antibiotics affect the gut 
microbiomes of bone-marrow-transplant 
recipients, whose immune systems are 
suppressed to minimize rejection of the 
transplant. They found that the resulting 
microbial disruptions can markedly affect the 
function of the immune system after the trans-
plant, and that supplementing individuals with 
healthy microbial populations could improve 
their recovery4.

Elhanan Borenstein, a systems biologist 
at Tel Aviv University in Israel, says, “People 
may underestimate the importance of 
modelling as a tool. It’s not just to simulate a 
real environment, but also a way to understand 
first principles.” Armed with these fundamen-
tals, researchers might ultimately be able to 
identify targeted microbiome interventions 
that meaningfully change clinical outcomes, 
even if much of the system remains a black box.

Michael Eisenstein is a freelance writer based 
in Philadelphia, Pennsylvania.
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A map of the complex pathways in human metabolism (carbohydrate pathway in red).

“Even seemingly simple 
interactions can hide 
complexity.”
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