
For most types of big data, from genome 
sequences to medical images, there is no 
single ‘best’ way to process the data. This issue 
is exemplified by the substantial differences in 
how individual laboratories preprocess and 
analyse data from functional magnetic res­
onance imaging (fMRI) experiments, which 
generate information about brain activity. 
Indeed, a survey of fMRI studies found that 
nearly every study used a different analysis 
pipeline1. Botvinik-Nezer et al.2 provide fur­
ther evidence of this variability on page 84, 
highlighting how analytical choices made by 
individual researchers can greatly influence 
the findings gleaned from an fMRI data set. 
The work is bound to spark lively discussion. 

Functional MRI experiments produce a 
series of images of the brain at work. These 
images go through several stages of process­
ing and analysis to determine which brain 
regions show significant activity. However, 
the choice of pipeline can alter the out­
come of an fMRI study. In 2012, for instance, 
6,912 unique processing and analysis pipe­
lines were applied to the same fMRI data set3. 
Many of the pipelines indicated that the same 

general brain regions were active, but the  
locations at which neural activity was deemed 
to be highest varied widely depending on the  
pipeline used.

Botvinik-Nezer et al. explored this 
phenomenon further. The authors gave 
70 independent research teams the same 
fMRI data set, generated from 108 people 
performing decision-related tasks. The 

teams were asked to use the data set to test 
nine hypotheses, each of which posited that 
activity in a specific brain region related to a 
particular feature of the tasks. This allowed 
Botvinik-Nezer et al. to evaluate the impact 
of analytical flexibility on fMRI results 
‘in the wild’ (rather than performing the 
analyses themselves, as was done in the 2012 
study). Notably, no two teams chose identical 

workflows to analyse the data, resulting in 
substantial variation in the results (Fig. 1).

It is standard in neuroimaging to test types 
of hypothesis such as the nine put forward by 
Botvinik-Nezer et al. by generating a statistical 
map. The map comprises a compendium of 
statistical tests performed on different parts 
(voxels) of the image. The results of these tests 
are subjected to a process called thresholding 
to set the level, for each voxel, at which activity 
picked up by the experiment is deemed to indi­
cate real neuronal activity rather than noise. 
The authors found considerable differences 
between each research team’s results even 
when the underlying statistical maps they had 
used were highly correlated. 

The strongest factor in explaining the 
differences between each team’s results was 
the spatial smoothness of the data being 
analysed. Spatial smoothing is a preprocessing 
step in which the activity of each voxel is aver­
aged with that of its neighbours — a process 
designed to reduce noise. Higher estimated 
smoothness was associated with a greater 
likelihood of reaching a significant outcome 
for each hypothesis. 

The fact that each team’s results were so 
pipeline-dependent is highly problematic, 
particularly because the exact configura­
tion of analytical pipelines is often poorly 
described in research articles. Moreover, sensi­
tivity analyses — which assess how different 
pipeline choices might affect an experi­
ment’s outcome — are rarely performed in 
neuroimaging. However, Botvinik-Nezer and 
colleagues offer several reasonable sugges­
tions for addressing the concerns that their 
work will raise. 

The first is to share unthresholded activity 
maps, because this will allow image-based 
meta-analysis. The authors found that such an 
analysis, which aggregated information across 
teams, yielded consensus results, no doubt 
aided by the fact that the spatial patterns in 
the activity maps were highly correlated across 
groups. 

Second is a call to publicly share both 
data and code, making it easier for others to 
attempt to reproduce a paper’s findings. In this 
regard, the authors model good behaviour by 
making all their data and processing pipelines 
publicly available. 

Third is the use of pre-registration — in 
which a hypothesis and analysis plan is made 
public before the experiment is performed. 
It is unfortunately common for researchers 
to explore various pipelines to find the ver­
sion that yields the ‘best’ results, ultimately 
reporting only that pipeline and ignoring 
the others. This practice can lead to errors 
and make it difficult to replicate findings4. 
Pre-registration would make it easy to detect 
cases in which researchers had explored 
various pipelines.

Fourth is to analyse all data through 
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Seventy laboratories that analysed the same neuroimaging 
data each produced different results. This finding highlights 
the potential consequences of a lack of standardized pipelines 
for processing complex data. See p.84 

Figure 1 | Implications of choosing a neuroimaging pipeline. Botvinik-Nezer et al.2 report that researchers 
process neuroimaging data using a wide variety of pipelines, which can produce varying results. In this 
simplified example, the pipeline has three steps: spatial smoothing of the images to reduce noise, which 
in this example is done to three different degrees; statistical modelling, which in this example can be 
performed in one of two ways; and ‘thresholding’ of statistical tests associated with these models to 
determine the level at which neuronal activity in each brain region is deemed to be significant, which in this 
example is set to two different values. Making different choices for each step leads to a different end point — 
the red dots represent how activation moves throughout the brain depending on which pipeline is used.
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“The fact that each team’s 
results were so pipeline-
dependent is highly 
problematic.”
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multiple pipelines and use the results to obtain  
consensus findings. This could be achieved by 
implementing the type of meta-analysis used 
by Botvinik-Nezer and co-workers.

Another goal of the study was to evaluate 
how accurately researchers could predict 
the number of teams that would report sig­
nificant results for each hypothesis. To study 
this, the authors ran separate ‘prediction 
markets’, one for the analysis teams and one 
for researchers who did not participate in 
the analysis. In them, researchers attempted 
to predict the outcomes of the scientific 
analyses and received monetary payouts on 
the basis of how well they predicted perfor­
mance. Participants — even researchers who 
had direct knowledge of the data set — con­
sistently overestimated the likelihood of 
significant findings. Botvinik-Nezer et al. do 
not explicitly explore how the analysts’ prior 
beliefs affected their findings and pipeline 
choices. For example, if a research finding 
does not initially coincide with expectations, 
will groups seek to alter pipelines until 
expectations and results align? The preva­
lence of pipeline exploration implies that  
this is likely.

What other improvements could be made 
for the future? One approach is to use pipe­
line-optimization tools5,6 to reduce analysis 
flexibility. These tools automatically iden­
tify pipelines that maximize reproducibility, 
which can reduce the risk of excessive pipeline 
exploration and selective reporting. In addi­
tion, increased use of sensitivity analyses 
to evaluate the effects of pipeline decisions 
would provide a better understanding of the 
link between analysis choices and research 
findings. The fact that activity maps were 
highly correlated across groups implies that 
multivariate statistical approaches, which 
identify spatial patterns in the data, might 
provide more-consistent results across pipe­
lines than would a series of tests performed  at 
individual voxels.

Ultimately, neuroimaging results should 
be carefully verified using independent data 
sets to demonstrate generalizability across 
samples, research contexts and populations. 
A positive example of this already being done 
comes from an approach for developing pre­
dictive models on the basis of brain activation, 
which can be shared, tested in multiple con­
texts and used in applied settings7.

It seems unlikely that the fMRI field will ever 
coalesce on a standard workflow that is appli­
cable to all types of study, because studies tend 
to be too varied for one pipeline to always be 
appropriate. But Botvinik-Nezer et al. con­
clude their paper by calling for an increased 
awareness of the situation, and a drive to 
improve the quality of method reporting. This 
is wise and prudent advice that researchers 
in any field analysing high-dimensional data 
would be well advised to heed.
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Solving a difficult physics problem can be 
surprisingly similar to assembling an inter­
locking mechanical puzzle. In both cases, 
the particles or pieces look alike, but can be 
arranged into a beautiful structure that relies 
on the precise position of each component 
(Fig. 1). In 1983, the physicist Robert Laughlin 
made a puzzle-solving breakthrough by 
explaining the structure formed by inter­
acting electrons in a device known as a Hall 
bar1. Although the strange behaviour of 
these electrons still fascinates physicists, it 
is not possible to simulate such a system or 
accurately measure the particles’ ultrashort 

time and length scales. On page  41, Clark 
et al.2 report the creation of a non-electronic 
Laughlin state made of composite matter–light 
particles called polaritons, which are easier to 
track and manipulate than are electrons.

To picture a Laughlin state, consider a Hall 
bar, in which such states are usually observed 
(Fig. 2a). In these devices, electrons that are free 
to move in a two-dimensional plane are sub­
jected to a strong magnetic field perpendicular 
to the plane. In classical physics, an electron at 
any position will start moving along a circular 
trajectory known as a cyclotron orbit, the radius 
of which depends on the particle’s kinetic 
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A Laughlin state is a phase of matter that has remarkable 
features, such as excitations that behave as a fraction of a 
particle. The long-sought creation of a photonic Laughlin state 
is a milestone for the field of quantum simulation. See p.41

Figure 1 | An interlocking mechanical puzzle. Certain many-body phases of matter, such as Laughlin states, 
depend on the precise position of all the particles in the system, just like the pieces in an interlocking puzzle.
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