
The heart is a specialized muscle that contracts 
rhythmically around its closed chambers to 
propel blood. However, this pumping func-
tion fluctuates throughout the day as the 
circulating blood flow adapts to the body’s 
ever-changing metabolic demands1. Under-
standing the variations in cardiac pump 
activity with each heartbeat might have rel-
evance for explaining the intricacies of heart 
function in health and disease. However, the 
tools for scrutinizing such changes remain 
imprecise. On page 252, Ouyang et al.2 report 
the development of a computational plat-
form that uses an artificial-intelligence (AI) 
approach to assess cardiac ultrasound video 
and to provide continuous, beat-by-beat 
measurement of cardiac pump function. 

Clinicians commonly assess cardiac 
function using a value termed the ejection 
fraction, which is the percentage of the blood 
volume in the left heart chamber (the left ven-
tricle) that is pumped out when the heart con-
tracts. In a normal heart, just over half of the 
blood is ejected; thus, the calculated ejection 
fraction is more than 50%. Highly trained phy-
sicians can ‘eyeball’ ultrasound video loops of 
a beating heart and make a precise estimate 
of the ejection fraction3. However, if two iso-
lated frames from the video were presented, 
showing only the beginning and the end of 
the ejection, even a trained physician would 
struggle to estimate the ejection fraction. 
Given that training and expertise vary from 
person to person, eyeballing is not relied on, 
and the ejection fraction is calculated by trac-
ing the boundaries of the left ventricle on a 
digital image to estimate the blood volume at 
the beginning and end of ejection. It is recom-
mended4 that clinicians estimate the ejection 
fraction of a heart by tracking it over three to 

five heartbeats; however, in typical clinical 
practice, often just one beat is assessed.  

If the accuracy of estimates of ejection 
fraction could be improved by having an easy 
way to routinely determine its precise value by 
tracking and averaging several heartbeats, this 
would be of immense benefit, particularly for 
people whose hearts are beating out of rhythm 
(a condition termed arrhythmia). If arrhythmia 
occurs, the changing duration of heartbeats 
alters the volume of blood filled and ejected 
from the left ventricle, thereby resulting in 
variations in the ejection fraction (Fig. 1). This 
variability makes the ejection fraction chal-
lenging to estimate for a type of arrhythmia 
known as atrial fibrillation. It is predicted5 that 
this condition will affect between 6 million and 
12 million people in the United States by 2050, 
and 17.9 million in Europe by 2060. Moreover, 
ejection fraction needs to be assessed fre-
quently in people who have atrial fibrillation, 
because heart failure (a state characterized 
by a poor ability of the heart to pump blood) 
occurs in more than one-third of such individ-
uals6. And more than half of people with heart 
failure have atrial fibrillation6.

To develop an AI-based method for 
assessing ejection fraction, Ouyang et  al. 
used 10,030 cardiac ultrasound videos. These 
videos were stored along with images contain-
ing human-generated tracings that marked 
the inner border of the left ventricle at the 
beginning and end of the ejection cycle. The 
authors used a type of AI architecture called 
a convolutional neural network (CNN), first 
to perform a semi-automatic detection of 
a pattern of pixel-based information (seg-
mentation) to recognize the left ventricle in 
the video frames; and second, to track the 
borders of the ventricle during the heartbeat 
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Clinicians use ultrasound videos of heartbeats to assess 
subtle changes in the heart’s pumping function. A method 
that uses artificial intelligence might simplify these complex 
assessments when heartbeats are out of rhythm. See p.252

limits of the theoretically derived estimates8.
Jiang and co-workers’ data, and data from 

similar studies, can aid estimates of the global 
effect of CO2 fertilization. The size of this effect 
depends directly on the sensitivity of carboxyl
ation efficiency to rising atmospheric CO2 
levels; this sensitivity should be similar at the 
eucalyptus forest and at all other sites around 
the globe, according to a theoretical analysis8. 
However, as CO2 levels increase, the capacity 
of photosynthetic carboxylation to process 
more CO2 diminishes, lowering the sensitivity 
of carboxylation efficiency to further CO2-level 
increases. In other words, the CO2-fertiliza-
tion effect is dwindling at the biochemical 
level8. To work out the global fertilization 
effect, the carboxylation sensitivity is multi-
plied by the yearly increase in atmospheric CO2 
concentration, which is becoming larger over 
time. The yearly increase in CO2 levels offsets 
the diminishing CO2-fertilization effect.

Another factor that affects the size of the 
global CO2-fertilization effect is the LAI3. 
The change in LAI observed at the Austral-
ian study site in response to CO2 enrichment 
is at the low end of the wide spectrum of 
LAI changes that have been observed else-
where4–6. At the global scale, however, the LAI 
is increasing over time — satellite observa-
tions show that Earth is literally becoming 
greener9,10. The increase of LAI amplifies the 
CO2-fertilization effect. 

The plant carbon-use efficiency reported in 
the current study is also at the low end of a wide 
range of reported values7, and contributes to 
the low CO2-fertilization effect observed in 
the study. However, we do not know much 
about how plant carbon-use efficiency varies 
over time at regional and global scales. This 
makes it difficult to assess whether the global 
fertilization effect will change because of 
shifts in this efficiency. 

The bottom line is that it is currently difficult 
to estimate the size of the global CO2-fertiliza-
tion effect accurately. To solve this problem, 
we need to know more about hierarchical con-
straints not only across spatial scales, from 
ecosystem sites to regions and the globe, 
but also across biological scales — from the 
molecular level of biochemical reactions, to 
the leaf and canopy scale, and through to the 
larger scales associated with plant production 
and ecosystem carbon pools.   
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cycle. Using CNN architecture to find the 
left-ventricle border in ultrasound images 
is not new7,8, but the innovation here is that 
Ouyang and colleagues evaluated new forms 
of three-dimensional CNN. This enabled them 
to integrate recognition of the left-ventricular 
border (the spatial information) from the 
2D display in single video frames with the 
changes over time (the temporal informa-
tion), to determine the information needed 
regarding the moving heart border. Forms of 
3D CNN have been used previously in realms 
as diverse as general video analysis9,10, assess-
ment of human physical activity11 and medical 
imaging12. However, Ouyang and colleagues’ 
work is, to our knowledge, the first attempt to 
take this approach in analysing cardiac ultra-
sound information over such a strikingly large 
number of videos. 

After Ouyang and colleagues had ‘trained’ 
the 3D CNN using the video data, they com-
pared the AI-generated estimates for the 
ejection fraction with human-measured 
ejection fractions. Their 3D CNN method esti-
mated the ejection fraction with a mean error 
of 4.1% and 6%, respectively, for two different 
sets of data used for validation. In other words, 
on average, using the authors’ proposed 
3D CNN method, the ejection fraction was 
estimated to within 95.9% and 94%, respec-
tively, of the corresponding ejection-fraction 
measurement reported by a clinician. These 
reported AI errors are substantially lower 
than those reported in previous attempts to 
use CNN to estimate the ejection fraction7, and 
are well within the inter-observer variability 
in ejection-fraction measurements between 
experienced clinicians3. 

Ouyang et al. then tested a further 
55 patients for whom 2 ultrasound specialists 
separately assessed the heartbeat videos. The 
authors found that when the variability in the 
human- and AI-generated ejection-fraction 
estimates for each patient was compared, the 
3D CNN method produced results with the 
least variability in the ejection fractions noted 
between the two recorded measurements. Fur-
thermore, results obtained with the 3D CNN 
were extremely consistent across different 
ultrasound machines, and for measurements 
taken on different occasions. These results 
also indicate the importance of assessing the 
kinetics of cardiac-wall motion in developing 
a system for gauging cardiac function. 

Several avenues of possible future work 
building on this research should be explored. 
Efforts to reduce the overall computational 
burden would be welcome, so that the tech-
nique could be performed inexpensively 
and instantaneously during an ultrasound 
examination. Ouyang and colleagues’ 
approach required 0.05 seconds per video 
frame, which they reported as being faster 
than the estimation speed of human experts. 
However, this is not yet as fast as real time, 

which would be less than 0.02 seconds per 
video frame (for a rate of 64 frames in 1.28 sec-
onds). A careful look at the different stages 
in the overall architecture of the 3D-CNN 
deep-learning approach will be needed to 
determine the best architecture for use in 
existing cardiac-ultrasound technologies, 
such as 3D echocardiography and ultrafast 
cardiac ultrasound. Moreover, the choice of 
computational approach for handling videos 
that contain suboptimal images, or those in 
which the image quality has been improved 
by the injection of image-enhancing agents, 
will need to be considered.  

This tool for the continuous assessment of 
cardiac pumping has the potential to affect 
other areas of cardiology. For example, such an 
approach might be adapted to monitor ultra-
sound changes in ejection fraction in people 
undergoing complex medical procedures, 
such as catheter-based cardiac interventions, 
surgery or when receiving medication or 
mechanical circulatory support for a condi-
tion termed acutely decompensated heart 
failure. 

Furthermore, the use of 3D CNN to track 
other parameters that are more sensitive 
than ejection fraction for determining early 
changes in cardiac function (such as physical 
measures of heart-muscle deformation or 
changes in cardiac shape or geometry) that 
develop before a person shows disease symp-
toms might lead to new ways of measuring or 
identifying cardiac biomarkers (hallmarks 
of disease)13–17. Such automated approaches 
might be particularly relevant for the bur-
geoning ‘multi-omics’ approaches for data 

integration that incorporate different layers 
of biological information to define different 
stages of cardiac dysfunction18. 

In this regard, we applaud the authors for 
making available to the research commu-
nity a large data set of annotated ultrasound 
videos (presented stripped of information that 
could identify the individuals). This resource 
will be extremely useful, and will probably 
spur yet more innovations in automated 
analysis that will boost our understanding of 
cardiac function. Moreover, such steps will 
be needed to achieve greater consistency 
in results obtained using different imaging 
systems for assessing cardiac function (such 
as cardiac ultrasound, computed tomography 
and magnetic resonance imaging). 

The ongoing efforts to improve the accu-
racy of automated measurements and disease 
prediction will, undoubtedly, ultimately free 
up extra time for physicians, enabling them to 
provide higher-quality clinical care and have 
better interactions with patients. Given the 
high health-care burden of cardiovascular dis-
ease worldwide, Ouyang and colleagues’ work 
is timely, and hints at an ensuing technological 
revolution that could have a profound effect 
on risk prediction of cardiovascular disease 
and on routine clinical decision-making.
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Figure 1 | A computational approach for assessing cardiac pump function over several heartbeats. 
Ouyang et al.2 report the development of a method that uses artificial intelligence (AI) to monitor a standard 
clinical measurement of cardiac function. This measurement is called the ejection fraction (EF), and it is the 
percentage of the volume of blood in the left ventricle (one of the heart’s chambers) that is pumped out of 
the chamber when the heart contracts. The authors developed a system that can analyse ultrasound video 
frames to determine the EF by continuously comparing changes in the borders of the left ventricle over 
space and time, using an AI architecture called a 3D convolutional neural network. a, Regular heartbeats 
have a fairly uniform EF. b, By contrast, irregularities (arrhythmic heartbeats) might result in shorter 
heartbeat cycles and a lower EF. The automation of heartbeat assessment by the use of AI (rather than 
depending on a clinician to monitor this) would make it easier to track several heartbeats. The averaging of 
EF over multiple heartbeats would provide a better heartbeat assessment for a person with arrhythmia than 
would be the case for the measurement of a single heartbeat. (Graphs based on Fig. 3 of ref. 2.)
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human intestine (Fig. 1). This approach uses a 
clump of human epithelial cells grown in vitro 
called an organoid or, specifically, a colonoid, 
because it is made of colon cells. The authors 
exposed colonoids either to pks+ E. coli isolated 
from a person with CRC or to an engineered 
version of the bacterium that did not make 
colibactin. This set-up enabled the bacteria 
to interact with the type of cellular surface they 
would encounter in the lumen of the colon. 
Whole-genome sequencing of colonoid cells 
enabled the authors to compare the mutations 
in cells exposed to E. coli that produced coli-
bactin or that were defective in producing it. 

From this analysis, the authors determined 
a unique colibactin mutational signature — 
specific patterns of DNA alterations that arose 
in the presence of colibactin. This signature 
predominantly included two types of change. 
One type is the substitution of a single DNA 
nucleotide base for a different nucleotide 
(single-base substitutions, termed SBS-pks). 
These were skewed towards a change described 
as T→N, in which a thymine (T) nucleotide is 
replaced by any other type of nucleotide (N). 

The other type of change is a small inser-
tion or deletion of nucleotides, character-
ized by deletions of single nucleotides in 
stretches of thymine nucleotides (known as 
T homopolymers). This sort of alteration is 
termed ID-pks. Interestingly, both SBS-pks 
and ID-pks occur preferentially downstream 
of adenine nucleotides, consistent with the 
proposed mode of action of colibactin, with 
two warheads targeting adenine nucleotides 
that are located  in close proximity on opposite 
strands of the DNA (one warhead targets an 
adenine upstream of the site of damage and 
the other targets the site of damage)4,5.

To determine whether this colibactin- 
associated mutational signature might be rel-
evant to human disease, the researchers ana-
lysed a data set6 of whole-genome sequences 
for 496 human CRC tumours that had migrated 
from their primary site in the colon to form  
secondary growths termed metastases. 
Remarkably, the authors found that SBS-pks 
and ID-pks mutations were present in 7.5% and 
8.8%, respectively, of CRC metastases, which is 
more frequent than in metastases of cancers of 
other primary origins. For example, SBS-pks and 
ID-pks mutations were found in 2.1% and 4.2%, 
respectively, of metastases of urinary-tract 
cancers, and in 1.6% and 1.6%, respectively, of 
head and neck tumour metastases. This pattern 
is consistent with the probability of exposure 
to pks+ E. coli at these different body sites, con-
sidering that the urinary tract, head and neck 
are only occasionally exposed to E. coli. When 
the authors assessed 2,208 predominantly  
primary CRC tumours from an independent 
data set (see go.nature.com/3d6utsx), 5.0% 
and 4.4% of the tumours, respectively, had 
high SBS-pks and ID-pks signatures, which sup-
ports the idea that pks+ E. coli are involved in  

Understanding what causes colorectal cancer 
(CRC) could help to combat this disease of the 
colon. On page 269, Pleguezuelos-Manzano 
et al.1 report evidence that strengthens a pre-
viously suspected connection to a type of gut 
bacterium. The authors implicate this microbe 
by pinpointing bacterial ‘fingerprints’ in DNA 
alterations found in CRC cells.

Certain bacteria produce genotoxic molec
ules — those capable of damaging DNA. These 
molecules can cause mutations if, for exam-
ple, mistakes occur during the DNA-repair 
process that tries to fix genotoxic damage. In 
2006, a genotoxin called colibactin, which is 
made by certain strains of the gut-dwelling 
bacterium Escherichia coli, was discovered2. 
That original description also shed light on 
how colibactin is produced by E. coli, identify-
ing a key region of bacterial DNA, termed the 
pks island (the microbes that have this island 
are called pks+ E. coli), which encodes various 
components of an ‘assembly line’ that makes 
colibactin. 

By producing colibactin, pks+ E. coli can 
accelerate tumour formation in animal 
models3. Moreover, these bacterial strains 
are more prevalent in close association 
with the epithelial cells in the mucosa of the 
colon in people who have CRC than in those 
who don’t3. However, the complexity of the 
colibactin-producing assembly line and the 

molecule’s considerable instability pose 
substantial challenges to researchers trying 
to decode the workings of the pks island and 
to characterize colibactin’s structure. 

There are several questions to be answered. 
For example, what is the mechanism of action 
of colibactin? What types of change might it 
make to DNA nucleotides? And does colibactin 
activity have relevance to human cancer? It 
is known4 that pks+ E. coli damages the DNA 

of cells it infects by causing adenine nucleo-
tides to undergo a type of modification called 
alkylation. Subsequent evidence proposing 
a symmetrical colibactin structure indicates 
that the molecule has two ‘warheads’ made of 
a structure called cyclopropane, which target 
adenines5. How common pks+ E. coli  is in the 
gut of human populations is not fully known.    

To determine the details of DNA changes 
that might be induced by pks+  E.  coli, 
Pleguezuelos-Manzano and colleagues turned 
to a ‘mini-gut’ cellular system that mimics the 
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