
Sight is one of our most vital senses. 
Biologically inspired machine vision has devel­
oped rapidly in the past decade, to the point 
that artificial systems can ‘see’ in the sense of 
gaining valuable information from images 
and videos1,2, although human vision remains 
much more efficient. On page 62, Mennel et al.3 
report a design for a visual system that, rather 
like the brain, can be trained to classify simple 
images in nanoseconds. 

Modern image sensors such as those in 
digital cameras are based on semiconductor 
(solid-state) technology and were developed 
in the early 1970s; they fall into two main types, 
known as charge-coupled devices and active-
pixel sensors4. These sensors can faithfully 
capture visual information from the environ­
ment, but generate a lot of redundant data. 
This vast amount of optical information is usu­
ally converted to a digital electronic format 
and passed to a computing unit for image 
processing. 

The resulting movement of massive 
amounts of data between sensor and pro­
cessing unit results in delays (latency) 
and high power consumption. As imaging 
rates and numbers of pixels grow, band­
width limitations make it difficult to send 
everything back to a centralized or cloud-
based computer rapidly enough for real-time 
processing and decision-making — which is 
especially important for delay-sensitive 
applications such as driverless vehicles, 

robotics or industrial manufacturing. 
A better solution would be to shift some 

of the computational tasks to the sensory 
devices at the outer edges of the com­
puter system, reducing unnecessary data 
movement. And because sensors normally 
produce analog (continuously varying) out­
puts, analog processing would be preferable 
to digital: analog-to-digital conversion is 
notoriously time- and energy-consuming.

To mimic the brain’s efficient processing 
of information, biologically inspired neuro­
morphic engineering adopts a computing 
architecture that has highly interconnected 
elements (neurons, connected by synapses), 
allowing parallel computing (Fig. 1a). These 
artificial neural networks can learn from their 
surroundings by iteration — for instance, learn­
ing to classify something after being shown 
known examples (supervised learning), or 
to recognize a characteristic structure of an 
object from input data without extra informa­
tion (unsupervised learning). During learning, 
an algorithm repeatedly makes predictions 
and strengthens or weakens each synapse 
in the network until it reaches an optimum 
setting.

Mennel and co-workers implement an 
artificial neural network directly in their image 
sensor. On a chip, they construct a network of 
photodiodes — tiny, light-sensitive units, each 
consisting of a few atomic layers of tungsten 
diselenide. This semiconductor’s response 
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An image-sensor array has been developed that acts as its 
own artificial neural network to capture and identify optical 
images simultaneously, processing the information rapidly 
without needing to convert it to a digital format. See p.62

curvature to induce stiffening of this arch to 
an extent similar to that of modern humans. 
For example, the authors examined the spe­
cies Australopithecus afarensis. This species 
existed more than three million years ago, 
and whether it walked upright in a human-
like fashion is debated6–8. Venkadesan et al. 
report that the transverse arch of A. afarensis 
was less curved than that of a human foot and 
thus, according to their model, probably less 
stiff. However, the authors correctly empha­
size that such curvature alone cannot be used 
reliably to infer movement capabilities, and 
other mechanisms might stiffen the foot suf­
ficiently to allow a human-like gait.

The curvature of transverse arches in human 
populations probably spans a wide range of 
values. Some people have noticeably flat 
feet whereas others have a high arch. Per­
haps those with flat feet have less curvature 
of their transverse arch and thus potentially 
reduced stiffness in their feet compared with 
those whose feet are less flat. But it is also pos­
sible that people with flat feet have sufficient 
transverse-arch curvature to compensate for 
their low longitudinal arch, thereby maintain­
ing sufficient stiffness for effective walking 
and running. Given that Venkadesan and col­
leagues’ work did not directly test whether 
there is a relationship between transverse- 
arch curvature and the stiffness of the human 
foot, it remains to be determined whether the 
range of differences in human transverse-arch 
curvature is a crucial functional parameter to 
explain foot stiffness. 

The range of curvature of the arch of human 
feet suggested by Venkadesan et al. would indi­
cate that a nearly twofold change in stiffness is 
possible as a result of natural variation in cur­
vature of the trans verse arch from one person 
to the next. However, any relationship between 
transverse-arch curvature and stiffness is 
probably not enough to completely explain 
the regulation of foot stiffness, and other 
factors will also need to be considered — for 
example, the stiffness of the plantar fascia or 
the potential for muscles to actively regulate 
arch stiffness. As such, caution is necessary 
before relying on this curvature parameter 
alone as the key variable in assessing human 
foot stiffness.

The fields of evolutionary biology, sports 
science and medicine have largely neglected 
the transverse arch when trying to explain the 
managements of loads applied to the foot. 
Venkadesan and colleagues’ research sug­
gests a new mechanism that links foot form 
and function and sets the scene for a possible 
shift in how the human foot is considered. 
More research will be needed to better under­
stand how the transverse arch contributes to 
human locomotor performance, including 
determining what its contribution is to an 
individual’s foot stiffness and whether this 
provides any mechanical or energetic benefits. 

It is conceivable that new treatments that take 
advantage of transverse-arch curvature to 
modulate foot stiffness could be developed 
for various foot disorders. Perhaps even more 
exciting are the implications of this work for 
efforts to mimic a human foot when designing 
prosthetic limbs or legged robots. 
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to light can be increased or decreased by 
altering an applied voltage, so that the sensi­
tivity of each diode can be individually tuned. 
In effect, this turns the photosensor network 
into a neural network (Fig. 1b) and allows it to 
carry out simple computational tasks. Chang­
ing the light responsivity of a photodiode 
alters the connection strength — the synap­
tic weight — in the network. Thus, the device 
combines optical sensing with neuromorphic 
computing.

The authors arrange the photodiodes into a 
square array of nine pixels, with three diodes 
to each pixel. When an image is projected on to 
the chip, various diode currents are produced, 
combined and read. The hardware array 
provides a form of analog computing: each 
photodiode generates an output current that 
is proportional to the incident light intensity, 
and the resulting currents are summed along 
a row or column, according to Kirchhoff’s law 
(a fundamental rule of currents in circuits). 

The array is then trained to perform a task. 
The discrepancy between the currents pro­
duced by the array and the predicted currents 
(the currents that would be produced if the 
array responds correctly to the image, for a 
given task) is analysed off-chip and used to 
adjust the synaptic weight for the next train­
ing cycle. This learning stage takes up time and 
computing resources, but, once trained, the 
chip performs its set task rapidly. 

Using different algorithms for the neural 
network, the authors demonstrate two neuro­
morphic functions. The first is classification: 
their 3 × 3 array of pixels can sort an image into 
one of three classes that correspond to three 
simplified letters, and thus identify which 
letter it is in nanoseconds. This relatively sim­
ple task is just a proof of concept, and could be 
extended to recognizing more-complicated 
images if the array size were scaled up.

The second function is autoencoding: the 
computing-in-sensor array can produce a sim­
plified representation of a processed image by 
learning its key features, even in the presence 
of signal noise. The encoded version contains 
only the most essential information, but can 
be decoded to reconstruct an image close to 
the original. 

There is more to be done before this 
promising technology can be used in practical 
applications. A neuromorphic visual system 
for autonomous vehicles and robotics will 
need to capture dynamic images and videos 
in three dimensions and with a wide field of 
view. Currently used image-capture technol­
ogy usually translates the 3D real world into 
2D information, thereby losing movement 
information and depth. The planar shape of 
existing image-sensor arrays also restricts the 
development of wide-field cameras5.

Imaging under dim light would be difficult 
for the device described by the authors. A 
redesign would be needed to improve light 

absorption in the thin semiconductor and 
to increase the range of light intensities that 
can be detected. Furthermore, the reported 
design requires high voltages and consumes 
a lot of power; by comparison, the energy con­
sumption per operation in a biological neural 
network is at the sub-femtojoule level (10⁻15 to 
10⁻13 joules)6. It would also be useful to expand 
the response to ultraviolet and infrared light, 
to capture information unavailable in the 
visible spectrum7.

The thin semiconductors used are difficult 
to produce uniformly over large areas, and are 
hard to process so that they can be integrated 
with silicon electronics, such as external cir­
cuits used for readout or feedback control. The 
speed and energy efficiency of devices that 
use these sensors will be dominated not by the 
image-capturing process, but by data move­
ment between sensors and external circuits. 
Moreover, although the computing-in-sensor 
unit collects and computes data in the analog 
domain, reducing analog-to-digital conver­
sions, the peripheral circuits still suffer from 
other intrinsic delays. The sensors and exter­
nal circuits will need to be co-developed to 
decrease the latency of the entire system.

Mennel and colleagues’ computing- 
in-sensor system should inspire further  
research into artificial-intelligence (AI) 
hardware. A few companies have developed AI 

vision chips based on silicon electronics8, but 
the chips’ intrinsic digital architecture leads 
to problems of latency and power efficiency. 

More broadly, the authors’ strategy is not 
limited to visual systems. It could be extended 
to other physical inputs for auditory, tactile, 
thermal or olfactory sensing9–11. Development 
of such intelligent systems, together with the 
arrival of the 5G fast wireless network, should 
allow real-time edge (low-latency) computing 
in the future.
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Figure 1 | Computing within a vision sensor for intelligent and efficient preprocessing. a, In 
conventional artificial-intelligence (AI) vision sensors, signals are collected from light-responsive sensors, 
converted from analog to digital form (ADC, analog-to-digital converter), amplified and then fed as inputs to 
an external artificial neural network (ANN) — layers of interconnected computational units (circles) whose 
connections can be adjusted, allowing the network to be trained to perform tasks such as classifying images. 
An input layer of the ANN receives signals encoding simple physical elements (represented here by dots and 
lines); in subsequent layers, these are optimized to mid-level features (simple shapes); and refined images 
are formed at the output layer (3D shapes). The overall response can be slow and energy-hungry. b, Mennel 
et al.3 report a system in which interconnected sensors (squares) on a chip not only collect signals, but also 
work as an ANN to recognize simple features, reducing movement of redundant data between sensors and 
external circuits. 
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