The gut microbiome

W

e are not alone in our bodies. Living inside every person are trillions of microorganisms — bacteria, viruses, fungi and other life forms that are collectively known as the microbiome. Various organs have distinct microbial inhabitants, but the group that has attracted the most attention in biomedical research is the one in the gut.

To better grasp the part that gut microbes play in health and disease, researchers from around the globe are investigating what makes a ‘good’ gut microbiome (see page S6). There are, after all, hundreds of distinct bacterial species in the gut — some pathogenic and some beneficial. Computational biologist Eran Segal argues that collecting microbiome data would allow a ‘deep phenotyping’ approach that could transform drug discovery (S19). And the study of some health-promoting probiotic species is yielding biological insights that might promote drug development (S9).

Several diseases are now thought to be influenced by processes in the gut microbiome. Those include cancer (S16), autoimmune disorders such as multiple sclerosis (S12) and autism spectrum disorder (S14). The gut microbiome also strongly interacts with certain drugs, including some mental-health therapeutics, and influences their effects (S10).

With evidence mounting of the gut microbiome’s health significance, synthetic biologists are looking to engineer the microbiome — both at the individual-species level and as an ecosystem — to thwart the development of disease (S20). There is also growing public interest in how the gut microbiome can be influenced — often focused on personal dietary choices. Microbiologist Peter Turnbaugh reframes this as a question of which foods will benefit our health, but rather what medical insights might be gleaned from the interactions between our gut microbes and what we eat (S23).

Much more research is under way on the gut microbiome than can be covered in this Outlook, but this supplement gives a taste of the breadth of this robust field (S24).

We are pleased to acknowledge the financial support of Danone Nutricia Research in producing this Outlook. As always, Nature retains sole responsibility for all editorial content.

Herb Brody
Chief supplements editor

Contents

S6 ECOSYSTEMS
The hunt for a healthy microbiome
Understanding the ecosystem

S9 Q&A
Homing in on the molecules from microbes
Michael Fischbach studies short-chain fatty acids

S10 DRUGS
Gut reaction
The link with pharmaceuticals

S12 AUTOIMMUNE DISEASE
When immunity goes wrong
The microbiome and disease

S14 DEVELOPMENTAL DISORDERS
Autism and the gut
Could there be a link?

S16 CANCER
Fighting cancer with microbes
Boosting response to therapies

S19 PERSPECTIVE
Another dimension for drug discovery
Microbiota data could transform therapy, says Eran Segal

S20 SYNTHETIC BIOLOGY
Engineering the microbiome
Modifying microbes for therapy

S23 PERSPECTIVE
Use diet as a tool, not a treatment
Scientists can’t tell you what to eat, says Peter J. Turnbaugh

S24 CLINICAL TRIALS
Research round-up
Study highlights

About Nature Outlooks
Nature Outlooks are supplements to Nature supported by external funding. They aim to stimulate interest and debate around a subject of particular strong current interest to the scientific community, in a form that is also accessible to policymakers and the broader public. Nature has sole responsibility for all editorial content — sponsoring organizations are consulted on the topic of the supplement, but have no influence on reporting thereafter (see go.nature.com/2NqAZ1d). All Nature Outlook supplements are available free online at go.nature.com/outlook

How to cite our supplements
Articles should be cited as part of a supplement to Nature. For example: Nature Vol. XXX, No. XXXX Suppl., Sxx–Sxx (2020).

Contact us
feedback@nature.com

For information about supporting a future Nature Outlook supplement, visit go.nature.com/partner

Copyright © 2020 Springer Nature Ltd. All rights reserved.

© 2020 Springer Nature Limited. All rights reserved.

The gut microbiome

We are not alone in our bodies. Living inside every person are trillions of microorganisms — bacteria, viruses, fungi and other life forms that are collectively known as the microbiome. Various organs have distinct microbial inhabitants, but the group that has attracted the most attention in biomedical research is the one in the gut.

To better grasp the part that gut microbes play in health and disease, researchers from around the globe are investigating what makes a ‘good’ gut microbiome (see page S6). There are, after all, hundreds of distinct bacterial species in the gut — some pathogenic and some beneficial. Computational biologist Eran Segal argues that collecting microbiome data would allow a ‘deep phenotyping’ approach that could transform drug discovery (S19). And the study of some health-promoting probiotic species is yielding biological insights that might promote drug development (S9).

Several diseases are now thought to be influenced by processes in the gut microbiome. Those include cancer (S16), autoimmune disorders such as multiple sclerosis (S12) and autism spectrum disorder (S14). The gut microbiome also strongly interacts with certain drugs, including some mental-health therapeutics, and influences their effects (S10).

With evidence mounting of the gut microbiome’s health significance, synthetic biologists are looking to engineer the microbiome — both at the individual-species level and as an ecosystem — to thwart the development of disease (S20). There is also growing public interest in how the gut microbiome can be influenced — often focused on personal dietary choices. Microbiologist Peter Turnbaugh reframes this as a question of which foods will benefit our health, but rather what medical insights might be gleaned from the interactions between our gut microbes and what we eat (S23).

Much more research is under way on the gut microbiome than can be covered in this Outlook, but this supplement gives a taste of the breadth of this robust field (S24).

We are pleased to acknowledge the financial support of Danone Nutricia Research in producing this Outlook. As always, Nature retains sole responsibility for all editorial content.

Herb Brody
Chief supplements editor

About Nature Outlooks
Nature Outlooks are supplements to Nature supported by external funding. They aim to stimulate interest and debate around a subject of particularly strong current interest to the scientific community, in a form that is also accessible to policymakers and the broader public. Nature has sole responsibility for all editorial content — sponsoring organizations are consulted on the topic of the supplement, but have no influence on reporting thereafter (see go.nature.com/2NqAZ1d). All Nature Outlook supplements are available free online at go.nature.com/outlook

How to cite our supplements
Articles should be cited as part of a supplement to Nature. For example: Nature Vol. XXX, No. XXXX Suppl., Sxx–Sxx (2020).

Contact us
feedback@nature.com

For information about supporting a future Nature Outlook supplement, visit go.nature.com/partner

Copyright © 2020 Springer Nature Ltd. All rights reserved.

© 2020 Springer Nature Limited. All rights reserved.