
A self-driving car approaches a stop sign, but instead 
of slowing down, it accelerates into the busy inter-
section. An accident report later reveals that four 
small rectangles had been stuck to the face of the 
sign. These fooled the car’s onboard artificial intel-

ligence (AI) into misreading the word ‘stop’ as ‘speed limit 45’. 
Such an event hasn’t actually happened, but the potential for 

sabotaging AI is very real. Researchers have already demonstrated 
how to fool an AI system into misreading a stop sign, by carefully 
positioning stickers on it1. They have deceived facial-recognition 
systems by sticking a printed pattern on glasses or hats. And they 
have tricked speech-recognition systems into hearing phantom 
phrases by inserting patterns of white noise in the audio. 

These are just some examples of how easy it is to break the lead-
ing pattern-recognition technology in AI, known as deep neural 
networks (DNNs). These have proved incredibly successful at cor-
rectly classifying all kinds of input, including images, speech and 
data on consumer preferences. They are part of daily life, running 
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FOOLING THE AI
Deep neural networks (DNNs) are brilliant at image 
recognition — but they can be easily hacked.

These stickers made an 
arti�cial-intelligence 
system read this stop 
sign as ‘speed limit 45’.

Scientists have 
evolved images that 
look like abstract 
patterns — but which 
DNNs see as familiar 
objects.

Adding carefully crafted noise to a picture can create a new image that people 
would see as identical, but which a DNN sees as utterly di�erent.

Rotating objects in an image confuses DNNs, probably because they are 
too di�erent from the types of image used to train the network. 

Even natural images 
can fool a DNN, 
because it might focus 
on the picture’s colour, 
texture or background 
rather than picking out 
the salient features a 
human would 
recognize.
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Stop Dumb-bell Racket

King penguin Star�sh

Manhole cover Pretzel

Stop Speed limit 45

In this way, any starting image can be tweaked so a DNN misclassi�es it 
as any target image a researcher chooses.

Sloth Target image: race car

+

Race car

everything from automated telephone systems to user recommendations 
on the streaming service Netflix. Yet making alterations to inputs — in the 
form of tiny changes that are typically imperceptible to humans — can 
flummox the best neural networks around.

These problems are more concerning than idiosyncratic quirks in a 
not-quite-perfect technology, says Dan Hendrycks, a PhD student in 
computer science at the University of California, Berkeley. Like many 
scientists, he has come to see them as the most striking illustration that 
DNNs are fundamentally brittle: brilliant at what they do until, taken 
into unfamiliar territory, they break in unpredictable ways (see ‘Fool-
ing the AI’). 

That could lead to substantial problems. Deep-learning systems are 
increasingly moving out of the lab into the real world, from piloting 
self-driving cars to mapping crime and diagnosing disease. But pixels 
maliciously added to medical scans could fool a DNN into wrongly 
detecting cancer, one study reported this year2. Another suggested that 
a hacker could use these weaknesses to hijack an online AI-based system 
so that it runs the invader’s own algorithms3.

In their efforts to work out what’s going wrong, researchers have 
discovered a lot about why DNNs fail. “There are no fixes for the 
fundamental brittleness of deep neural networks,” argues François 
Chollet, an AI engineer at Google in Mountain View, California. To 
move beyond the flaws, he and others say, researchers need to augment 
pattern-matching DNNs with extra abilities: for instance, making AIs 
that can explore the world for themselves, write their own code and 
retain memories. These kinds of system will, some experts think, form 
the story of the coming decade in AI research.

REALITY CHECK
In 2011, Google revealed a system that could recognize cats in YouTube 
videos, and soon after came a wave of DNN-based classification sys-
tems. “Everybody was saying, ‘Wow, this is amazing, computers are 
finally able to understand the world,’” says Jeff Clune at the University 
of Wyoming in Laramie, who is also a senior research manager at Uber 
AI Labs in San Francisco, California.

But AI researchers knew that DNNs do not actually understand the 
world. Loosely modelled on the architecture of the brain, they are software 
structures made up of large numbers of digital neurons arranged in many 
layers. Each neuron is connected to others in layers above and below it.  

The idea is that features of the raw input coming into the bottom 
layers — such as pixels in an image — trigger some of those neurons, 
which then pass on a signal to neurons in the layer above according to 
simple mathematical rules. Training a DNN network involves exposing 
it to a massive collection of examples, each time tweaking the way in 
which the neurons are connected so that, eventually, the top layer gives 
the desired answer — such as always interpreting a picture of a lion as a 
lion, even if the DNN hasn’t seen that picture before.

A first big reality check came in 2013, when Google researcher 
Christian Szegedy and his colleagues posted a preprint called ‘Intrigu-
ing properties of neural networks’4. The team showed that it was possible 
to take an image — of a lion, for example — that a DNN could identify 
and, by altering a few pixels, convince the machine that it was looking 
at something different, such as a library. The team called the doctored 
images ‘adversarial examples’.

A year later, Clune and his then-PhD student Anh Nguyen, together 
with Jason Yosinski at Cornell University in Ithaca, New York, showed 
that it was possible to make DNNs see things that were not there, such 
as a penguin in a pattern of wavy lines5. “Anybody who has played with 
machine learning knows these systems make stupid mistakes once in 
a while,” says Yoshua Bengio at the University of Montreal in Canada, 
who is a pioneer of deep learning. “What was a surprise was the type 
of mistake,” he says. “That was pretty striking. It’s a type of mistake we 
would not have imagined would happen.”

New types of mistake have come thick and fast. Last year, Nguyen, who 
is now at Auburn University in Alabama, showed that simply rotating 
objects in an image was sufficient to throw off some of the best image 
classifiers around6. This year, Hendrycks and his colleagues reported 
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that even unadulterated, natural images can still trick state-of-the-art 
classifiers into making unpredictable gaffes, such as identifying a mush-
room as a pretzel or a dragonfly as a manhole cover7. 

The issue goes beyond object recognition: any AI that uses DNNs to 
classify inputs — such as speech — can be fooled. AIs that play games 
can be sabotaged: in 2017, computer scientist Sandy Huang, a PhD stu-
dent at the University of California, Berkeley, and her colleagues focused 
on DNNs that had been trained to beat Atari video games through a 
process called reinforcement learning8. In this approach, an AI is given 
a goal and, in response to a range of inputs, learns through trial and error 
what to do to reach that goal. It is the technology behind superhuman 
game-playing AIs such as AlphaZero and the poker bot Pluribus. Even 
so, Huang’s team was able to make their AIs lose games by adding one 
or two random pixels to the screen.

Earlier this year, AI PhD student Adam Gleave at the University of 
California, Berkeley, and his colleagues demonstrated that it is possible 
to introduce an agent to 
an AI’s environment that 
acts out an ‘adversarial 
policy’ designed to con-
fuse the AI’s responses9. 
For example, an AI foot-
baller trained to kick a 
ball past an AI goalkeeper 
in a simulated environ-
ment loses its ability to 
score when the goal-
keeper starts to behave in 
unexpected ways, such as collapsing on the ground. 

Knowing where a DNN’s weak spots are could even let a hacker take 
over a powerful AI. One example of that came last year, when a team from 
Google showed that it was possible to use adversarial examples not only to 
force a DNN to make specific mistakes, but also to reprogram it entirely 
— effectively repurposing an AI trained on one task to do another3.

Many neural networks, such as those that learn to understand 
language, can, in principle, be used to encode any other computer 
program. “In theory, you can turn a chatbot into whatever programme 
you want,” says Clune. “This is where the mind starts to boggle.” He 
imagines a situation in the near future in which hackers could hijack 
neural nets in the cloud to run their own spambot-dodging algorithms. 

For computer scientist Dawn Song at the University of California, 
Berkeley, DNNs are like sitting ducks. “There are so many different ways 
that you can attack a system,” she says. “And defence is very, very difficult.”

WITH GREAT POWER COMES GREAT FRAGILITY
DNNs are powerful because their many layers mean they can pick up 
on patterns in many different features of an input when attempting to 
classify it. An AI trained to recognize aircraft might find that features 
such as patches of colour, texture or background are just as strong pre-
dictors as the things that we would consider salient, such as wings. But 
this also means that a very small change in the input can tip it over into 
what the AI considers an apparently different state. 

One answer is simply to throw more data at the AI; in particular, to 
repeatedly expose the AI to problematic cases and correct its errors. 
In this form of ‘adversarial training’, as one network learns to identify 
objects, a second tries to change the first network’s inputs so that it 
makes mistakes. In this way, adversarial examples become part of a 
DNN’s training data. 

Hendrycks and his colleagues have suggested quantifying a DNN’s 
robustness against making errors by testing how it performs against a 
large range of adversarial examples. However, training a network to 
withstand one kind of attack could weaken it against others, they say. 
And researchers led by Pushmeet Kohli at Google DeepMind in London 
are trying to inoculate DNNs against making mistakes. Many adver-
sarial attacks work by making tiny tweaks to the component parts of an 
input — such as subtly altering the colour of pixels in an image — until 
this tips a DNN over into a misclassification. Kohli’s team has suggested 

that a robust DNN should not change its output as a result of small 
changes in its input, and that this property might be mathematically 
incorporated into the network, constraining how it learns. 

For the moment, however, no one has a fix on the overall problem 
of brittle AIs. The root of the issue, says Bengio, is that DNNs don’t 
have a good model of how to pick out what matters. When an AI sees 
a doctored image of a lion as a library, a person still sees a lion because 
they have a mental model of the animal that rests on a set of high-level 
features — ears, a tail, a mane and so on — that lets them abstract away 
from low-level arbitrary or incidental details. “We know from prior 
experience which features are the salient ones,” says Bengio. “And that 
comes from a deep understanding of the structure of the world.”  

One attempt to address this is to combine DNNs with symbolic AI, 
which was the dominant paradigm in AI before machine learning. With 
symbolic AI, machines reasoned using hard-coded rules about how 
the world worked, such as that it contains discrete objects and that they 

are related to one another in various ways. Some researchers, such 
as psychologist Gary Marcus at New York University, say hybrid AI 
models are the way forward. “Deep learning is so useful in the short 
term that people have lost sight of the long term,” says Marcus, who 
is a long-time critic of the current deep-learning approach. In May, 
he co-founded a start-up called Robust AI in Palo Alto, California, 
which aims to mix deep learning with rule-based AI techniques to 
develop robots that can operate safely alongside people. Exactly what 
the company is working on remains under wraps.  

Even if rules can be embedded into DNNs, they are still only as 
good as the data they learn from. Bengio says that AI agents need 
to learn in richer environments that they can explore. For example, 

most computer-vision systems fail to recognize that a can of beer is 
cylindrical because they were trained on data sets of 2D images. That is 
why Nguyen and colleagues found it so easy to fool DNNs by presenting 
familiar objects from different perspectives. Learning in a 3D environ-
ment — real or simulated — will help. 

But the way AIs do their learning also needs to change. “Learning 
about causality needs to be done by agents that do things in the world, 
that can experiment and explore,” says Bengio. Another deep-learning 
pioneer, Jürgen Schmidhuber at the Dalle Molle Institute for Artificial 
Intelligence Research in Manno, Switzerland, thinks along similar lines. 
Pattern recognition is extremely powerful, he says — good enough to 
have made companies such as Alibaba, Tencent, Amazon, Facebook and 
Google the most valuable in the world. “But there’s a much bigger wave 
coming,” he says. “And this will be about machines that manipulate the 
world and create their own data through their own actions.” 

In a sense, AIs that use reinforcement learning to beat computer 
games are doing this already in artificial environments: by trial and 
error, they manipulate pixels on screen in allowed ways until they reach 
a goal. But real environments are much richer than the simulated or 
curated data sets on which most DNNs train today.  

ROBOTS THAT IMPROVISE
In a laboratory at the University of California, Berkeley, a robot arm 
rummages through clutter. It picks up a red bowl and uses it to nudge a 
blue oven glove a couple of centimetres to the right. It drops the bowl and 
picks up an empty plastic spray bottle. Then it explores the heft and shape 
of a paperback book. Over several days of non-stop sifting, the robot 
starts to get a feel for these alien objects and what it can do with them.

The robot arm is using deep learning to teach itself to use tools. Given 
a tray of objects, it picks up and looks at each in turn, seeing what hap-
pens when it moves them around and knocks one object into another. 

When researchers give the robot a goal — for instance, presenting 
it with an image of a nearly empty tray and specifying that the robot 
arrange objects to match that state — it improvises, and can work with 
objects it has not seen before, such as using a sponge to wipe objects 
off a table. It also figured out that clearing up using a plastic water bot-
tle to knock objects out of the way is quicker than picking up those 
objects directly. “Compared to other machine-learning techniques, 
the generality of what it can accomplish continues to impress me,” says 

“THERE ARE SO 
MANY DIFFERENT 
WAYS THAT YOU 
CAN ATTACK A 
SYSTEM.”
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Chelsea Finn, who worked at the Berkeley lab and is now continuing 
that research at Stanford University in California.  

This kind of learning gives an AI a much richer understanding of 
objects and the world in general, says Finn. If you had seen a water bottle 
or a sponge only in photographs, you might be able to recognize them 
in other images. But you would not really understand what they were or 
what they could be used for. “Your understanding of the world would be 
much shallower than if you could actually interact with them,” she says. 

But this learning is a slow process. In a simulated environment, an 
AI can rattle through examples at lightning speed. In 2017, AlphaZero, 
the latest version of DeepMind’s self-taught game-playing software, was 
trained to become a superhuman player of Go, then chess and then shogi 
(a form of Japanese chess) in just over a day. In that time, it played more 
than 20 million training games of each event. 

AI robots can’t learn this quickly. Almost all major results in deep 
learning have relied heavily on large amounts of data, says Jeff Mahler, 
co-founder of Ambidextrous, an AI and robotics company in Berkeley, 
California. “Collecting tens of millions of data points would cost years 
of continuous execution time on a single robot.” What’s more, the data 
might not be reliable, because the calibration of sensors can change 
over time and hardware can degrade. 

Because of this, most robotics work that involves deep learning still 
uses simulated environments to speed up the training. “What you can 
learn depends on how good the simulators are,” says David Kent, a PhD 
student in robotics at the Georgia Institute of Technology in Atlanta. 
Simulators are improving all the time, and researchers are getting bet-
ter at transferring lessons learnt in virtual worlds over to the real. Such 
simulations are still no match for real-world complexities, however. 

Finn argues that learning using robots is ultimately easier to scale 
up than learning with artificial data. Her tool-using robot took a 
few days to learn a relatively simple task, but it did not require heavy 
monitoring. “You just run the robot and just kind of check in with it 
every once in a while,” she says. She imagines one day having lots of 
robots out in the world left to their own devices, learning around the 
clock. This should be possible — after all, this is how people gain an 
understanding of the world. “A baby doesn’t learn by downloading data 
from Facebook,” says Schmidhuber. 

LEARNING FROM LESS DATA
A baby can also recognize new examples from just a few data points:  
even if they have never seen a giraffe before, they can still learn to spot 
one after seeing it once or twice. Part of the reason this works so quickly 
is because the baby has seen many other living things, if not giraffes, so is 
already familiar with their salient features.

A catch-all term for granting these kinds of abilities to AIs is transfer 
learning: the idea being to transfer the knowledge gained from previ-
ous rounds of training to another task. One way to do this is to reuse 
all or part of a pre-trained network as the starting point when training 
for a new task. For example, reusing parts of a DNN that has already 
been trained to identify one type of animal — such as those layers that 
recognize basic body shape — could give a new network the edge when 
learning to identify a giraffe. 

An extreme form of transfer learning aims to train a new network by 
showing it just a handful of examples, and sometimes only one. Known 
as one-shot or few-shot learning, this relies heavily on pre-trained 
DNNs. Imagine you want to build a facial-recognition system that iden-
tifies people in a criminal database. A quick way is to use a DNN that has 
already seen millions of faces (not necessarily those in the database) so 
that it has a good idea of salient features, such as the shapes of noses and 
jaws. Now, when the network looks at just one instance of a new face, 
it can extract a useful feature set from that image. It can then compare 
how similar that feature set is to those of single images in the criminal 
database, and find the closest match.

Having a pre-trained memory of this kind can help AIs to recog-
nize new examples without needing to see lots of patterns, which 
could speed up learning with robots. But such DNNs might still be at 
a loss when confronted with anything too far from their experience. 

It’s still not clear how much these networks can generalize.
Even the most successful AI systems such as DeepMind’s AlphaZero 

have an extremely narrow sphere of expertise. AlphaZero’s algorithm 
can be trained to play both Go and chess, but not both at once. Retrain-
ing a model’s connections and responses so that it can win at chess resets 
any previous experience it had of Go. “If you think about it from the 
perspective of a human, this is kind of ridiculous,” says Finn. People 
don’t forget what they’ve learnt so easily.

LEARNING HOW TO LEARN
AlphaZero’s success at playing games wasn’t just down to effective 
reinforcement learning, but also to an algorithm that helped it (using a 
variant of a technique called Monte Carlo tree search) to narrow down its 
choices from the possible next steps10. In other words, the AI was guided 
in how best to learn from its environment. Chollet thinks that an impor-
tant next step in AI will be to give DNNs the ability to write their own such 
algorithms, rather than using code provided by humans. 

Supplementing basic pattern-matching with reasoning abilities 
would make AIs better at dealing with inputs beyond their comfort 

zone, he argues. Com-
puter scientists have for 
years studied program 
synthesis, in which a 
computer generates code 
automatically. Combin-
ing that field with deep 
learning could lead to 
systems with DNNs that 
are much closer to the 
abstract mental models 
that humans use, Chollet 
thinks. 

In  r o b o t i c s ,  f o r 
instance, computer scientist Kristen Grauman at Facebook AI Research 
in Menlo Park, California, and the University of Texas at Austin is teach-
ing robots how best to explore new environments for themselves. This 
can involve picking in which directions to look when presented with new 
scenes, for instance, and which way to manipulate an object to best under-
stand its shape or purpose. The idea is to get the AI to predict which new 
viewpoint or angle will give it the most useful new data to learn from. 

Researchers in the field say they are making progress in fixing deep 
learning’s flaws, but acknowledge that they’re still groping for new tech-
niques to make the process less brittle. There is not much theory behind 
deep learning, says Song. “If something doesn’t work, it’s difficult to 
figure out why,” she says. “The whole field is still very empirical. You 
just have to try things.” 

For the moment, although scientists recognize the brittleness of 
DNNs and their reliance on large amounts of data, most say that the 
technique is here to stay. The realization this decade that neural net-
works — allied with enormous computing resources — can be trained 
to recognize patterns so well remains a revelation. “No one really has 
any idea how to better it,” says Clune. ■

Douglas Heaven is a freelance writer based in London.
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