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Reinventing the wheel is pointless, 
but for computational biologists it’s 
sometimes unavoidable. So when Rob 

Finn and Folker Meyer realized how much 
their work overlapped, they decided to try 
something different.

Finn is head of the sequence-families team 
at the European Bioinformatics Institute (EBI) 
in Hinxton, UK; Meyer is a computer scientist 
at Argonne National Laboratory in Lemont, 
Illinois. Both run facilities that let researchers 
perform a computationally intensive process 
called metagenomic analysis, which allows 
microbial communities to be reconstructed 

from shards of DNA. It would be helpful, they 
realized, if they could try each other’s code. The 
problem was that their analytical ‘pipelines’ — 
the carefully choreographed computational 
steps required to turn raw data into scientific 
knowledge — were written in different lan-
guages. Meyer’s team was using an in-house 
system called AWE, whereas Finn was working 
with nearly 9,500 lines of Python code. 

“It was a horrible Python code base,” says 
Finn — complicated, and difficult to maintain. 
“Bits had been bolted on in an ad hoc fashion 
over seven years by at least four different devel-
opers.” And it was “heavily tied to the compute 
infrastructure”, he says, meaning it was writ-
ten for specific computational resources and 

a particular way of organizing files, and thus 
essentially unusable outside the EBI. Because 
the EBI wasn’t using AWE, the reverse was also 
true. Then Finn and Meyer learnt about the 
Common Workflow Language (CWL). 

CWL is a way of describing analytical pipe-
lines and computational tools — one of more 
than 250 systems now available, including such 
popular options as Snakemake, Nextflow and 
Galaxy. Although they speak different languages 
and support different features, these systems 
have a common aim: to make computational 
methods reproducible, portable, maintainable 
and shareable. CWL is essentially an exchange 
language that researchers can use to share pipe-
lines for whichever system. For Finn, that 

Computational pipelines turn raw data into reproducible scientific knowledge.

THAT’S THE WAY  
WE FLOW
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language brought sanity to his codebase, 
reducing it by around 73%. Importantly, it has 
made it easier to test, execute and share new 
methods, and to run them on the cloud. 

There is a learning curve to adopting work-
flow languages. But, says Brian Naughton, data 
lead and co-founder of the drug-discovery firm 
Hexagon Bio in Menlo Park, California, “the 
energy that you expend learning is more than 
made up for by the energy you save in having 
your code be reproducible.” 

STEP BY STEP
For computational biologists, pipelines are 
methods; much like wet-lab protocols, they 
must be documented. But pipelines often 
comprise dozens of steps, so it’s not trivial to do. 
Bioinformatician Titus Brown at the University 
of California, Davis, calculated that passing six 
samples through his de novo transcriptome 
assembly pipeline — involving data down-
load, quality control, normalization, assembly, 
annotation and analysis — requires “well over 
100 steps”. Researchers must document pre-
cisely how each step is performed if they have 
any hope of reproducing them at a later date. 

Typically, researchers codify workflows 
using general scripting languages such as 
Python or Bash. But these often lack the 
necessary flexibility. Workflows can involve 
hundreds to thousands of data files; a pipeline 
must be able to monitor their progress and exit 
gracefully if any step fails. And pipelines must 
be smart enough to work out which tasks need 
to be re-executed and which do not. 

Bioinformatician Davis McCarthy at 
St Vincent’s Institute of Medical Research in 
Fitzroy, Australia, says Python and R were 
more than enough for the relatively simple 
workflows he used as a PhD student. But 
today, McCarthy, who works with single-cell 
data sets, processes orders of magnitude more 
samples, some of which inevitably fail owing to 
problems such as network issues and memory 
shortages. “It was just way beyond my capa-
bilities to figure that out from scratch for an 
analysis of this size,” he says. He adopted the 
command-line-driven Snakemake, instead 
(see ‘Anatomy of a workflow’).

More problematic is scalability: a script that 
works on a laptop can rarely run on a comput-
ing cluster or the cloud without modification. 
These systems typically have specific format-
ting, authentication and configuration require-
ments to describe, for instance, the necessary 
computing resources. And then there’s the fact 
that many pipelines are tightly tailored to a lab’s 
specific computational environment.

Workflow systems can ease that complexity. 
Some, such as Galaxy, allow users to build 
pipelines in a point-and-click user interface; 
others operate at the text-based command line. 
Yet all typically support a few core functions, 
including ‘re-entrancy’ (picking up where the 
workflow left off in an earlier run), scalability 
and the ability to specify the computational 
environment for each step. Many support 

software-installation tools such as Conda, 
as well as containerization systems such as 
Docker, which means that other users can run 
those pipelines, even if their own computing 
infrastructure differs. And workflow systems 
can generate detailed reports of what they did. 

Containers are particularly powerful 
additions to workflows, says Carole Goble, a 
computer scientist at the University of Man-
chester, UK, because they allow researchers to 
package the precise computational components 
required to execute each step; other users can 
then download those containers to recreate that 
environment on their own system. They even 
allow for different steps to use components that 
are not mutually compatible, such as different 
versions of the Python programming language. 
“Thank God for containers, because that’s made 
an enormous difference,” she says. 

In 2018, researchers in the African bio-
informatics network H3ABioNet built four 
pipelines — two each in CWL and Nextflow 
— and embedded them in Docker containers 
(S. Baichoo et al. BMC Bioinform. 19, 457; 2018). 
Doing so made the results reproducible and the 
workflows accessible across the network, despite 
differing computational resources. 

GOLD STANDARD
Ruchi Munshi, a software-product manager 
at the Broad Institute of MIT and Harvard in 
Cambridge, Massachusetts, says computational 
biologists there were motivated to develop and 
adopt the Cromwell workflow system and its 
language WDL (Workflow Definition Lan-
guage) to provide better standardization and 
sharing of workflows across the institute, greater 
accessibility for non-programmer biologists and 
scalability. 

Standardization, Munshi notes, is a particu-
lar benefit of workflow systems. With script-
ing languages, there is no single way to write a 

pipeline, making it difficult to cobble together 
different steps into a new pipeline. But using 
a workflow language, researchers can create 
libraries of compatible pieces that can be assem-
bled like building blocks. The Broad Institute, 
for instance, publishes WDL-based pipelines 
for its GATK software on GitHub and Terra, 
and at the containers registry dockstore.org. 
(Dockstore also lists workflows written in 
Nextflow and CWL.) 

The ‘nf-core’ project is creating a set of 
gold-standard bioinformatics pipelines for 
the Nextflow system. Philip Ewels, who 
founded nf-core at SciLifeLab in Stockholm, 
says its goal is to create pipelines that work in 
a consistent way and support a uniform set of 
features, such as Docker and Conda compat-
ibility. “If you can use one of these pipelines, 
you can use all of them,” he says. 

CWL, by contrast, aims for portability across 
workflow systems, by separating the compu-
tational parts of a workflow from the code 
required to execute them. Goble, who is build-
ing a searchable registry of CWL workflows, 
says: “The CWL’s job is really to be the work-
flow language in common. And that’s it. It does 
exactly what it says on the tin.” 

So, do you need a workflow system? Not 
every task requires one, and there is a learn-
ing curve. Scripting usually suffices for one-off 
tasks and when working out the pipeline itself. 
The tipping point, most agree, comes when you 
need to run the same workflow over and over 
again, or if the data are likely to be published. 

Fortunately, says Ewels, the languages 
are easy to pick up, and examples are abun-
dant. “Once you’re familiar with it, you get in 
the habit of using it,” he says. “And then you 
wonder how you ever lived without it.” ■

Jeffrey M. Perkel is technology editor at 
Nature.

Following computer-science tradition, a 
simple ‘Hello, world!’ example was set 
up with help from Snakemake creator 
Johannes Köster at the University of 
Duisburg-Essen in Germany. Given a text 
file with your name, the workflow creates a 
welcome message, breaks it into chunks, 
capitalizes them and reassembles the text. 

Snakemake is rule-based. The first rule 
(‘all’) specifies the file you want to create; the 
software uses the other rules to work out how 
to build it. As bioinformatician Titus Brown 
at the University of California, Davis, explains, 
this is like deciding what you want for dinner, 
and then going backwards to work out how to 
make it: to serve pasta and sauce, you have 
to make sauce; to make sauce, you have to 
cook tomatoes and onions; and so on. 

The workflow includes three steps: 
‘helloworld’, ‘split’ and ‘toupper’; an extra 
rule, ‘clean’, deletes all the generated files. A 
bit of Python code works out how many files 
the ‘split’ rule will create, and their names. 

To see it in action, install Snakemake 
from go.nature.com/2p8yhv0, then execute 
‘snakemake -s hello_world.smk’;  
you should see a new file called ‘hello-world.
txt’. To delete the created files, type:  
‘snakemake -s hello_world.smk clean’.  
Export to CWL with:  
‘snakemake -s hello_world.
smk --export-cwl hello_world.cwl’. 

A recent preprint provides useful 
guidelines for workflow creation 
(M. van Vliet Preprint at https://arxiv.org/
abs/1904.06163; 2019). J.P.

Anatomy of a workflow
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