
IL
LU

ST
R

AT
IO

N
 B

Y
TH

E
P

R
O

JE
C

T
TW

IN
S

B Y J E F F R E Y M . P E R K E L

Reinventing the wheel is pointless,
but for computational biologists it’s
sometimes unavoidable. So when Rob

Finn and Folker Meyer realized how much
their work overlapped, they decided to try
something different.

Finn is head of the sequence-families team
at the European Bioinformatics Institute (EBI)
in Hinxton, UK; Meyer is a computer scientist
at Argonne National Laboratory in Lemont,
Illinois. Both run facilities that let researchers
perform a computationally intensive process
called metagenomic analysis, which allows
microbial communities to be reconstructed

from shards of DNA. It would be helpful, they
realized, if they could try each other’s code. The
problem was that their analytical ‘pipelines’ —
the carefully choreographed computational
steps required to turn raw data into scientific
knowledge — were written in different lan-
guages. Meyer’s team was using an in-house
system called AWE, whereas Finn was working
with nearly 9,500 lines of Python code.

“It was a horrible Python code base,” says
Finn — complicated, and difficult to maintain.
“Bits had been bolted on in an ad hoc fashion
over seven years by at least four different devel-
opers.” And it was “heavily tied to the compute
infrastructure”, he says, meaning it was writ-
ten for specific computational resources and

a particular way of organizing files, and thus
essentially unusable outside the EBI. Because
the EBI wasn’t using AWE, the reverse was also
true. Then Finn and Meyer learnt about the
Common Workflow Language (CWL).

CWL is a way of describing analytical pipe-
lines and computational tools — one of more
than 250 systems now available, including such
popular options as Snakemake, Nextflow and
Galaxy. Although they speak different languages
and support different features, these systems
have a common aim: to make computational
methods reproducible, portable, maintainable
and shareable. CWL is essentially an exchange
language that researchers can use to share pipe-
lines for whichever system. For Finn, that

Computational pipelines turn raw data into reproducible scientific knowledge.

THAT’S THE WAY
WE FLOW

5 S E P T E M B E R 2 0 1 9 | V O L 5 7 3 | N A T U R E | 1 4 9

TOOLBOX

©

2019

Springer

Nature

Limited.

All

rights

reserved.

language brought sanity to his codebase,
reducing it by around 73%. Importantly, it has
made it easier to test, execute and share new
methods, and to run them on the cloud.

There is a learning curve to adopting work-
flow languages. But, says Brian Naughton, data
lead and co-founder of the drug-discovery firm
Hexagon Bio in Menlo Park, California, “the
energy that you expend learning is more than
made up for by the energy you save in having
your code be reproducible.”

STEP BY STEP
For computational biologists, pipelines are
methods; much like wet-lab protocols, they
must be documented. But pipelines often
comprise dozens of steps, so it’s not trivial to do.
Bioinformatician Titus Brown at the University
of California, Davis, calculated that passing six
samples through his de novo transcriptome
assembly pipeline — involving data down-
load, quality control, normalization, assembly,
annotation and analysis — requires “well over
100 steps”. Researchers must document pre-
cisely how each step is performed if they have
any hope of reproducing them at a later date.

Typically, researchers codify workflows
using general scripting languages such as
Python or Bash. But these often lack the
necessary flexibility. Workflows can involve
hundreds to thousands of data files; a pipeline
must be able to monitor their progress and exit
gracefully if any step fails. And pipelines must
be smart enough to work out which tasks need
to be re-executed and which do not.

Bioinformatician Davis McCarthy at
St Vincent’s Institute of Medical Research in
Fitzroy, Australia, says Python and R were
more than enough for the relatively simple
workflows he used as a PhD student. But
today, McCarthy, who works with single-cell
data sets, processes orders of magnitude more
samples, some of which inevitably fail owing to
problems such as network issues and memory
shortages. “It was just way beyond my capa-
bilities to figure that out from scratch for an
analysis of this size,” he says. He adopted the
command-line-driven Snakemake, instead
(see ‘Anatomy of a workflow’).

More problematic is scalability: a script that
works on a laptop can rarely run on a comput-
ing cluster or the cloud without modification.
These systems typically have specific format-
ting, authentication and configuration require-
ments to describe, for instance, the necessary
computing resources. And then there’s the fact
that many pipelines are tightly tailored to a lab’s
specific computational environment.

Workflow systems can ease that complexity.
Some, such as Galaxy, allow users to build
pipelines in a point-and-click user interface;
others operate at the text-based command line.
Yet all typically support a few core functions,
including ‘re-entrancy’ (picking up where the
workflow left off in an earlier run), scalability
and the ability to specify the computational
environment for each step. Many support

software-installation tools such as Conda,
as well as containerization systems such as
Docker, which means that other users can run
those pipelines, even if their own computing
infrastructure differs. And workflow systems
can generate detailed reports of what they did.

Containers are particularly powerful
additions to workflows, says Carole Goble, a
computer scientist at the University of Man-
chester, UK, because they allow researchers to
package the precise computational components
required to execute each step; other users can
then download those containers to recreate that
environment on their own system. They even
allow for different steps to use components that
are not mutually compatible, such as different
versions of the Python programming language.
“Thank God for containers, because that’s made
an enormous difference,” she says.

In 2018, researchers in the African bio-
informatics network H3ABioNet built four
pipelines — two each in CWL and Nextflow
— and embedded them in Docker containers
(S. Baichoo et al. BMC Bioinform. 19, 457; 2018).
Doing so made the results reproducible and the
workflows accessible across the network, despite
differing computational resources.

GOLD STANDARD
Ruchi Munshi, a software-product manager
at the Broad Institute of MIT and Harvard in
Cambridge, Massachusetts, says computational
biologists there were motivated to develop and
adopt the Cromwell workflow system and its
language WDL (Workflow Definition Lan-
guage) to provide better standardization and
sharing of workflows across the institute, greater
accessibility for non-programmer biologists and
scalability.

Standardization, Munshi notes, is a particu-
lar benefit of workflow systems. With script-
ing languages, there is no single way to write a

pipeline, making it difficult to cobble together
different steps into a new pipeline. But using
a workflow language, researchers can create
libraries of compatible pieces that can be assem-
bled like building blocks. The Broad Institute,
for instance, publishes WDL-based pipelines
for its GATK software on GitHub and Terra,
and at the containers registry dockstore.org.
(Dockstore also lists workflows written in
Nextflow and CWL.)

The ‘nf-core’ project is creating a set of
gold-standard bioinformatics pipelines for
the Nextflow system. Philip Ewels, who
founded nf-core at SciLifeLab in Stockholm,
says its goal is to create pipelines that work in
a consistent way and support a uniform set of
features, such as Docker and Conda compat-
ibility. “If you can use one of these pipelines,
you can use all of them,” he says.

CWL, by contrast, aims for portability across
workflow systems, by separating the compu-
tational parts of a workflow from the code
required to execute them. Goble, who is build-
ing a searchable registry of CWL workflows,
says: “The CWL’s job is really to be the work-
flow language in common. And that’s it. It does
exactly what it says on the tin.”

So, do you need a workflow system? Not
every task requires one, and there is a learn-
ing curve. Scripting usually suffices for one-off
tasks and when working out the pipeline itself.
The tipping point, most agree, comes when you
need to run the same workflow over and over
again, or if the data are likely to be published.

Fortunately, says Ewels, the languages
are easy to pick up, and examples are abun-
dant. “Once you’re familiar with it, you get in
the habit of using it,” he says. “And then you
wonder how you ever lived without it.” ■

Jeffrey M. Perkel is technology editor at
Nature.

Following computer-science tradition, a
simple ‘Hello, world!’ example was set
up with help from Snakemake creator
Johannes Köster at the University of
Duisburg-Essen in Germany. Given a text
file with your name, the workflow creates a
welcome message, breaks it into chunks,
capitalizes them and reassembles the text.

Snakemake is rule-based. The first rule
(‘all’) specifies the file you want to create; the
software uses the other rules to work out how
to build it. As bioinformatician Titus Brown
at the University of California, Davis, explains,
this is like deciding what you want for dinner,
and then going backwards to work out how to
make it: to serve pasta and sauce, you have
to make sauce; to make sauce, you have to
cook tomatoes and onions; and so on.

The workflow includes three steps:
‘helloworld’, ‘split’ and ‘toupper’; an extra
rule, ‘clean’, deletes all the generated files. A
bit of Python code works out how many files
the ‘split’ rule will create, and their names.

To see it in action, install Snakemake
from go.nature.com/2p8yhv0, then execute
‘snakemake -s hello_world.smk’;
you should see a new file called ‘hello-world.
txt’. To delete the created files, type:
‘snakemake -s hello_world.smk clean’.
Export to CWL with:
‘snakemake -s hello_world.
smk --export-cwl hello_world.cwl’.

A recent preprint provides useful
guidelines for workflow creation
(M. van Vliet Preprint at https://arxiv.org/
abs/1904.06163; 2019). J.P.

Anatomy of a workflow

1 5 0 | N A T U R E | V O L 5 7 3 | 5 S E P T E M B E R 2 0 1 9

TOOLBOX

©

2019

Springer

Nature

Limited.

All

rights

reserved.

