
IL
LU

ST
R

AT
IO

N
 B

Y
TH

E
P

R
O

JE
C

T
TW

IN
S

B Y J E F F R E Y M . P E R K E L

When it comes to climate model-
ling, every computational second
counts. Designed to account for

air, land, sun and sea, and the complicated
physics that links them, these models can
run to millions of lines of code, which are
executed on the world’s most powerful com-
puters. So when the coder-climatologists of
the Climate Modeling Alliance (CliMA) — a
coalition of US-based scientists, engineers
and mathematicians — set out to build a
model from the ground up, they opted for a
language that could handle their needs. They
opted for Julia.

Launched in 2012, Julia is an open-source
language that combines the interactivity
and syntax of ‘scripting’ languages, such as
Python, Matlab and R, with the speed of ‘com-
piled’ languages such as Fortran and C.

Among climate scientists, the lingua franca
is Fortran: speedy, but — with roots dating
to the 1950s — not terribly exciting. “A lot
of people, when they hear ‘Fortran’, are like,
‘Oh, my God, I don’t want to program in
that’,” says Frank Giraldo, a mathematician at
the Naval Postgraduate School in Monterey,
California, and a co-principal investigator on
the CliMA project. Younger programmers
prefer languages that can accommodate the
latest trends in software and hardware design,

Giraldo says, and since adopting Julia he has
seen an uptick in interest. “Some of them are
really interested in climate modelling, but
others are intrigued by the idea of using Julia
for some large-scale application,” he says.

Jane Herriman, who is studying materials
science at the California Institute of Technol-
ogy in Pasadena, says that she has seen ten-
fold-faster runs since rewriting her Python
codes in Julia. Michael Stumpf, a systems
biologist and self-styled Julia proselytizer at
the University of Melbourne, Australia, who
has ported computational models from R, has
seen an 800-fold improvement. “You can do
things in an hour that would otherwise take
weeks or months,” he says.

Researchers often find themselves coding algorithms in one programming language, only
to have to rewrite them in a faster one. An up-and-coming language could be the answer.

JULIA: COME FOR THE
SYNTAX, STAY FOR THE SPEED

1 A U G U S T 2 0 1 9 | V O L 5 7 2 | N A T U R E | 1 4 1

TOOLBOX

©

2019

Springer

Nature

Limited.

All

rights

reserved.

That acceleration, combined with Julia’s
user-friendly syntax and its promise to tackle
the ‘two-language problem’ — research-
ers often prototype algorithms in a user-
friendly language such as Python but then
have to rewrite them in a faster language
— is raising the language’s profile, particu-
larly among those dealing with computa-
tionally intensive problems. Besides climate
modelling, the language is being adopted
in disciplines such as artificial intelligence,
finance and bioinformatics.

According to Alan Edelman, a computer
scientist at the Massachusetts Institute of
Technology in Cambridge who co-created
Julia, the language has been downloaded some
9 million times so far. Julia is now listed among
the world’s 50 most-popular programming
languages, according to one index. It’s still
relatively niche — the 2019 index ranks Julia
50th, and Python 3rd — but it has a passionate
user base.

“People are just tired of rewriting code,”
Edelman says. “They’re tired of codes that
obscure what their intent is, they’re tired
of some researcher or graduate student or
employee writing code and then moving on to
their next job and nobody knows what to do
with their code anymore. Those are the people
who are using Julia — people who want perfor-
mance, portability, flexibility.”

BEST OF BOTH WORLDS
Julia — the name puts the ‘Ju’ in ‘Jupyter’, a
computational notebook system popular
among data scientists, alongside Python
and R — is essentially a compiled language
in scripting-language clothing. In scripting
languages such as Python, users type code
into an interactive editor line by line, and the
language interprets and executes it, returning
the result immediately. With languages such
as C and Fortran, code must be compiled into
machine-readable instructions before it can
be executed. The former is easier to use, but
the latter produces faster code. As a result,
programmers for whom speed counts often
develop algorithms in scripting languages
and then translate them into C or Fortran, a
laborious and error-prone process.

Julia circumvents that two-language
problem because it runs like C, but reads like
Python. And it includes built-in features to
accelerate computationally intensive prob-
lems, such as distributed computing, that
otherwise require multiple languages. (Dis-
tributed computing allows programmers
to split difficult problems across multiple
processors and computers.) Vijay Ivaturi,
a quantitative clinical pharmacologist at
the University of Maryland in Baltimore,
used Julia to create a tool for personalizing
drug-dosing decisions. His previous go-to
language, Fortran, required him to use sev-
eral ancillary tools. “I fell in love with the
speed of Julia,” he says. “But overall, I think
I fell in love with the fact that I don’t have to

switch [language] tools to get my work done:
I can live in one environment through and
through.”

Users typically code in Julia using the REPL
(read–evaluate–print loop) console — an
interactive text-based interface that takes the
input, evaluates it and returns the results to the
user. (They can also use a standard program-
ming text editor, or the Jupyter notebook.)
To all appearances, using Julia is like coding
in Python: type a line, get a result. But in the
background, the code is compiled. Conse-
quently, the first time a function is keyed in, it
might be slow, but subsequent runs are faster.
And once the code is working correctly, users
can optimize it (see ‘Get started’).

According to Giraldo, one reason that
CliMA selected Julia for its work was its per-
formance in a Christmas ‘bake-off ’-style cod-
ing challenge against C and Fortran, using
Giraldo — then a Julia novice — as a guinea
pig. “The Julia code, right out of the box, was
really within a couple of per cent away from
these highly optimized Fortran codes,” he says.

And it’s easier to read, he adds. With
features such as multiple dispatch (allowing
multiple functions to have the same name)
and metaprogramming (programs that can
modify themselves), the language empha-
sizes simplicity. Julia also supports Unicode
symbols, allowing programmers to use Greek
letters as variables, rather than Roman equiv-
alents. This means that they can write code
that resembles the maths in their papers,
with C = 2*π*r for the circumference of a cir-
cle, instead of C = 2*pi*r. “You could express
things exactly how your mind thinks about

them,” says Edelman. “You want the machine
to bend to your will, not you to bend to the
machine’s will.”

FAST, POWERFUL AND EASY
Michael Borregaard, a biodiversity researcher
at the University of Copenhagen, says Julia has
accelerated his codes by two orders of mag-
nitude compared with R — a result of both
computational speed and linguistic clarity.
“Coding it into Julia made it a lot easier for
me to refactor it for speed, or to rethink how
I implemented it to make it go faster,” he says.

For George Tollefson, a clinical research
assistant at the Women and Infants Hospital of
Rhode Island in Providence, it was Julia’s blend
of user-friendliness and computational power
that made it ideal for writing a data viewer for
large genomic data sets. “Julia was an attrac-
tive language to us in the beginning because
it is very fast and powerful,” he says. “But it’s
also very easy to learn to write in.” And it has a
supportive community, Tollefson adds. Because
the language has a relatively small user base,
it can be difficult to find answers online. But
developer communities on Slack, Discourse
and GitHub can fill the gap. “In some cases
we found that people hadn’t encountered the
problem [we had], but they were able to help
us within half an hour,” Stumpf says.

That said, a smaller user base also translates
to a correspondingly smaller package eco-
system — the collection of external code
libraries that programmers use to extend a
language into new disciplines. According to
Edelman, the Julia ecosystem has upwards
of 2,600 packages, including Flux (machine
learning), BioJulia (DNA sequence analysis),
DifferentialEquations (computational simula-
tions) and JuMP (mathematical modelling). By
comparison, the CRAN R language repository
has more than 14,000 packages, and Python’s
PyPI index exceeds 187,000.

Researchers who require libraries that
haven’t been translated into Julia can use the
code directly using packages such as Pycall
(Python) and Rcall (R). As an undergraduate at
the Massachusetts Institute of Technology, Lydia
Krasilnikova, now a computer-science gradu-
ate student at Harvard University in Cambridge,
Massachusetts, created a Matlab-to-Julia trans-
lator, which is available online. “A lot of people
have messaged me saying that the translator
eased their transition and let them test code in
Julia and tinker with their existing code base in
ways they wouldn’t have been able to before,”
she says.

Ultimately, the choice of language comes
down to personal preference, project require-
ments and your colleagues. In many cases, any
language will do. But for “performant code”, says
Giraldo, “then, honestly, right now I see Julia as
really the best choice. You have to suck it up and
just dive in. It’s not really that difficult.” ■

Jeffrey M. Perkel is technology editor at
Nature.

Set up
●● Julia: julialang.org
●● Juno, a free Julia language ‘integrated

development environment’ including
a code editor, debugging tools and
interactive console: junolab.org

●● Debugger: go.nature.com/2jdfr5g
●● IJulia, a ‘kernel’ for writing Julia code in

Jupyter: go.nature.com/2jldaj2
●● Packages: go.nature.com/30brtxe

Learn
●● julialang.org/learning/
●● Julia language documentation:

go.nature.com/2nxrqup
●● Think Julia: go.nature.com/2y7skii

Get help
●● Slack: julialang.slack.com
●● Discourse: discourse.julialang.org
●● Gitter: gitter.im/JuliaLang/julia
●● An interactive and executable Julia

notebook, highlighting some key features,
is available at go.nature.com/2lxllfd. J.P.

Get started

1 4 2 | N A T U R E | V O L 5 7 2 | 1 A U G U S T 2 0 1 9

TOOLBOX

©

2019

Springer

Nature

Limited.

All

rights

reserved.

