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Machine learning is  driving 
discovery across the sciences. 
Its powerful pattern finding and 

prediction tools are helping researchers 
in all fields — from finding new ways to 
make molecules and spotting subtle signals 
in assays, to improving medical diagnoses 

and revealing fundamental particles.
Yet, machine-learning tools can also turn 

up fool’s gold — false positives, blind alleys 
and mistakes. Many of the algorithms are so 
complicated that it is impossible to inspect 
all the parameters or to reason about exactly 
how the inputs have been manipulated. As 

these algorithms begin to be applied ever 
more widely, risks of misinterpretations, 
erroneous conclusions and wasted scientific 
effort will spiral. 

These problems are not new. The 
machine-learning field has chastened itself 
for decades with the ‘tank problem’. The 

Three pitfalls to avoid  
in machine learning

As scientists from myriad fields rush to perform algorithmic analyses,  
Google’s Patrick Riley calls for clear standards in research and reporting. 
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Researchers at TAE Technologies in California and at Google are using machine learning to optimize equipment that produces a high-energy plasma.
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original study seems to have arisen in 
the 1960s (ref. 1 is the earliest plausible ref-
erence known for this study; with thanks 
to software engineer Jeff Kaufman) and 
is obscured by the mists of time, but the 
story goes like this. Researchers wrote an 
algorithm to spot tanks in photographs 
provided by the military. The model found 
the tanks successfully in test images. But it 
failed later with future real photos in the 
field. Why? The details vary in the retell-
ing, but the pictures it was trained on con-
tained other patterns — tanks emerging in 
the morning light, or under clouds. So, it 
was other factors such as these that drove 
the algorithm, not the presence of tanks. 

Similar confusions are causing soul-
searching today2. Many machine-learning 
papers fail to perform an adequate set of 
experiments. Standards for review are 
inconsistent. And competition is encourag-
ing some researchers to cut corners and skip 
checks once they think they have the answer 
they want. 

We cannot predict all the difficulties 
that will arise with each analysis. But, as a 
minimum, researchers bringing machine 
learning to their fields should familiarize 
themselves with the common pitfalls and 
the practices they can use to detect and 
avoid them. 

To illustrate, I highlight three problems 

in machine-learning analyses that we 
have faced and overcome in the Google 
Accelerated Science team. 

THREE PROBLEMS
Splitting data inappropriately. When 
building models, machine-learning prac-
titioners typically break data into training 
and test sets. The training set teaches the 
model, and the model’s performance is 
evaluated by how well it describes the test 
set. Researchers typically split the data at 
random. But data in real life are rarely ran-
dom. They might contain trends in time — 
such as from changes in the way the data 
were gathered, or from varying choices over 
what information to collect. 

Such historical patterns are buried in data 
sets on molecules, for example, which are 
being screened virtually by machine-learn-
ing algorithms to 
find candidates for 
drugs. The chal-
lenge is to predict 
how effectively 
a  hyp othet ica l 
mole c u le  w i l l , 
for example, be 
absorbed into the body or decrease inflam-
mation. Screening starts with data on mole-
cules that either do or do not have the desired 
effect. But the contexts in which the data were 

collected might be different from how the 
machine-learning model is to be used. 

For example, a model might be built on a 
set of molecules that is publicly available, but 
then used on a different, proprietary set. And 
chemists’ gazes often switch from certain 
groups of molecules to others, when promis-
ing leads are examined and discarded. Thus, 
researchers often overestimate how well the 
model will do in practice3. This can lead to 
inflated expectations and it wastes time and 
money on poorly chosen molecules. Many 
model builders (myself included) have fallen 
into this trap. 

In other words, the question you want to 
answer should affect the way you split your 
data. For the model to predict the effect of 
adding a couple of atoms to a molecule, 
each molecule in the test set should have a 
partner in the training set that is a couple 
of atoms different. If you want to get good 
predictions on chemically diverse molecules, 
each molecule in the test set should be unlike 
everything in the training set. The ‘right’ way 
to split data might not be obvious, but careful 
consideration and trying several approaches 
will give more insight. 

Hidden variables. In an ideal experiment, 
the researcher changes only the variables 
of interest and fixes all others. This level of 
control is often impossible in the real world. 

An eye examination at Aravind hospital in Madurai, India, where staff and Google researchers are trying to automate diagnoses of blindness caused by diabetes.

“Competition 
is encouraging 
some 
researchers to 
cut corners and 
skip checks.”
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The accuracy of equipment drifts over time, 
batches of reagents differ, one experimen-
tal condition is performed before another, 
and results can even be skewed by the 
weather. Such uncontrolled variables can 
be pernicious in machine-learning models. 

For example, my team at Google has been 
working with the nuclear-fusion start-up 
firm TAE Technologies in Foothill Ranch, 
California, to optimize an experiment for 
producing high-energy plasma4. We built 
models to try and understand the best equip-
ment settings for the plasma machine. There 
were hundreds of control parameters, from 
when to energize electrodes to which voltage 
to set on the magnets. A range of measure-
ments was recorded, including temperatures 
and spectra.

We took data from thousands of runs of 
the plasma machine over many months. The 
settings varied as the device was tuned and 
modified and as components wore out and 
different ideas were tried. We were pleased 
when we arrived at a model that predicted 
well, for given settings, whether the plasma’s 
energy would be high. Soon, it became obvi-
ous that our predictions were not based on 
what we thought. 

When we trained the model again, with 
the time of the experiment as the only input, 
rather than all the settings of the machine, 
we got similar predictive power. Why? We 
think that our first model locked on to time 
trends, rather than physical phenomena. As 
the experiments ran, there were periods of 
time when the machinery was functioning 
well and periods when it wasn’t. Therefore, 
the time at which the experiment was done 
gives you some information about whether 
the plasma produced was high energy or not. 
Furthermore, it’s possible to predict roughly 
when an experiment was done from the set-
ting of the control parameters — there were 
time trends in how those were varied, too. 

Hidden variables can also stem from the 
layout of experiments. For example, we are 
working with many collaborators on inter-
preting microscope images, including the 
New York Stem Cell Foundation Research 
Institute in New York City. The images 
include arrays of biological experiments on 
plates — typically a grid of wells containing 
cells and liquids. The goal is to spot wells 
with certain characteristics, such as a change 
in appearance of the cells after a chemical 
treatment. But biological variation means 
that each plate will always look slightly dif-
ferent. And there can be variation across a 
single plate. The edges often look different 
from the centre, for example, if more liquid 
has evaporated in peripheral wells or if the 
plate was tilted. 

A machine-learning algorithm can easily 
pick up on these unintentional variations. 
For instance, the model might just identify 
which wells are on the edge of the plate. A 
simple way to check if this has happened is 

to ask the model to predict other things, such 
as the location on the plate, which plate it is 
and which batch the image is from. If it can 
do this, be suspicious of your results.

The take-home lesson is: use multiple 
machine-learning models to detect 
unexpected and hidden variables. One 
model focuses on the question you care 
about — is the plasma high or low energy; 
are the cells healthy or sick? Other models 
flush out the confounders. If the latter result 
is strong, normalize your data, run further 
experiments or temper your conclusions.

Mistaking the objective. Machine-learning 
algorithms require researchers to specify a 
‘loss function’, which determines the severity 
of various errors — such as whether it is bet-
ter to make two errors of 1% each, or a single 
error of 2%. Practitioners tend to use a small 
set of functions that can fail to capture what 
they really care about. 

For example, we have been using machine 
learning to assist in solving partial differ-
ential equations5. 
These formulae are 
common across the 
sciences, including 
in fluid dynam-
ics, electromag-
netism, materials 
science, astrophys-
ics and economic modelling. Often, they 
must be solved numerically, and we trained 
models to provide better accuracy at limited 
resolution.

We started with an equation to describe 
how water waves propagate in one dimen-
sion. The algorithm was tasked with repeat-
edly predicting the next time step from the 
current one. We had two slightly different 
formulations and trained models on both. 
According to our loss functions, the two 
models were equally good. However, one 
produced nonsense while the other stayed 
close to the desired result. 

Why? The loss function controlling the 
learning was considering only the error of 
the next step, not the validity of the solution 
over many steps, which is what we really 
want. 

Diverging goals also cropped up in our 
work on machine screening for diabetic 
retinopathy6, a complication of diabetes 
and a leading cause of preventable blindness 
in the world. The condition can be treated 
effectively if it is detected early, from images 
of the back of the eye. As we gathered data 
and had ophthalmologists offer diagnoses 
based on the images, we asked our machine-
learning tools to predict what the ophthal-
mologist would say. Two issues emerged. 

First, the ophthalmologists often disa-
greed on the diagnosis. Thus, we realized 
that we could not base our model on a single 
prediction. Nor could we use a majority vote, 
because, when it comes to medical accuracy, 

sometimes the minority opinion is the right 
one. Second, the diagnosis of a single dis-
ease was not actually the real objective. We 
should have been asking: ‘should this patient 
see a doctor?’ We therefore expanded our 
goal from the diagnosis of a single disease to 
multiple diseases.

It is easy for machine-learning practi-
tioners to become fixated on an ‘obvious’ 
objective in which the data and labels are 
clear. But they could be setting up the algo-
rithm to solve the wrong problem. The 
overall aim must be kept in mind, or we 
will produce precise systems that answer 
the wrong questions.

WHAT NEXT?
First, machine-learning experts need to 
hold themselves and their colleagues to 
higher standards. When a new piece of 
lab equipment arrives, we expect our lab 
mates to understand its functioning, how 
to calibrate it, how to detect errors and to 
know the limits of its capabilities. So, too, 
with machine learning. There is no magic 
involved, and the tools must be understood 
by those using them.

Second, different disciplines need to 
develop clear standards for how to perform 
and report on machine learning in their 
areas. The appropriate controls, soundness 
checks and error measurements will vary 
from field to field, and these need to be spelt 
out clearly so that researchers, reviewers and 
editors can encourage good behaviour.

Third, the education of scientists in 
machine learning needs to include these 
broader issues. Although some resources 
exist (such as http://ai.google/education), we 
need to do more. We often teach the algo-
rithms and tools, but students need to learn 
more about how to apply their algorithms 
and question them appropriately. 

We are at an amazing point — compu-
tational power, data and algorithms are 
coming together to produce great opportu-
nities for discoveries with the assistance of 
machine learning. It is our responsibility as 
a scientific community to ensure that we use 
this opportunity well. ■

Patrick Riley is a principal engineer and the 
senior researcher on the Google Accelerated 
Science team at Google, Mountain View, 
California, USA.
e-mail: pfr@google.com
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