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B Y  N E I L  S A V A G E

Chethan Pandarinath wants to enable 
people with paralysed limbs to reach out 
and grasp with a robotic arm as naturally 

as they would their own. To help him meet this 
goal, he has collected recordings of brain activ-
ity in people with paralysis. His hope, which 
is shared by many other researchers, is that he 
will be able to identify the patterns of electrical 
activity in neurons that correspond to a person’s 
attempts to move their arm in a particular way, 
so that the instruction can then be fed to a pros-
thesis. Essentially, he wants to read their minds.

“It turns out, that’s a really challenging prob-
lem,” says Pandarinath, a biomedical engineer 
at Emory University and the Georgia Institute 
of Technology, both in Atlanta. “These signals 
from the brain — they’re really complicated.” 
In search of help, he turned to artificial intel-
ligence (AI). He fed his brain-activity record-
ings to an artificial neural network, a computer 
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Marriage of mind 
and machine
Bringing together artificial intelligence and neuroscience 
promises to yield benefits for both fields.
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architecture that is inspired by the brain, and 
tasked it with learning how to reproduce the 
data.

The recordings came from a small subset 
of neurons in the brain — around 200 of the 
10 million to 100 million neurons that are 
required for arm movement in humans. To 
make sense of such a small sample, the com-
puter had to find the underlying structure of 
the data. This can be described by patterns 
that the researchers call latent factors, which 
control the overall behaviour of the recorded 
activity. The effort revealed the brain’s tem-
poral dynamics — the way that its pattern of 
neural activity changes from one moment to 
the next — thereby providing a more fine-
grained set of instructions for arm movement 
than did previous methods. “Now, we can 
very precisely say, on an almost millisecond-
by-millisecond basis, right now the animal 
is trying to move at this precise angle,” 
Pandarinath explains. “That’s exactly what we 
need to know to control a robotic arm.”

His work is just one example of the growing 
interaction between AI and cognitive science. 
AI, with its ability to identify patterns in large, 
complex data sets, has seen remarkable suc-
cesses in the past decade, in part by emulating 
how the brain performs certain computations. 
Artificial neural networks that are analogous 
to the networks of neurons that comprise 
the brain have given computers the ability 
to distinguish an image of a cat from one of 
a coconut, to spot pedestrians with enough 
accuracy to direct a self-driving car, and to rec-
ognize and respond to the spoken word. Now, 
cognitive science is beginning to benefit from 
the power of AI, both as a model for devel-
oping and testing ideas about how the brain 
performs computations, and as a tool for pro-
cessing the complex data sets that researchers 
such as Pandarinath are producing. “The tech-
nology is coming full circle and being applied 
back to understand the brain,” he says. That 
cycle of mutual reinforcement is likely to con-
tinue. As AI enables neuroscientists to obtain 
further insights into how computation works 
in the brain, the effort might lead to machines 
that can take on more human-like intelligence.

It’s only natural that the two disciplines would 
fit together, says Maneesh Sahani, a theoretical 
neuroscientist and machine-learning researcher 
at the Gatsby Computational Neuroscience Unit 
at University College London. “We’re effectively 
studying the same thing. In the one case, we’re 
asking how to solve this learning problem 
mathematically so it can be implemented effi-
ciently in a machine. In the other case, we’re 
looking at the sole existing proof that it can be 
solved — which is the brain.”

A BRAIN ANALOGUE
The successes of AI owe much to the arrival of 
more powerful processors and ever-growing 
quantities of training data. But the concept 
that underlies these advances is the artificial 
neural network. These networks consist of 

layers of nodes that are analogous to neurons. 
Nodes in the input layer are connected to 
nodes in a hidden layer by a series of math-
ematical weights that act like the synapses 
between neurons. The hidden layer is simi-
larly connected to an output layer. Input data 
for a task such as facial recognition could be 
an array of numbers that describe each pixel 
in an image of a face in terms of where it falls 
on a 100-point scale from white to black, or 
whether it is red, green or blue. Data are fed 
in, the hidden layer then multiplies those val-
ues by the weights of the connections, and 
an answer comes out. To train the system to 
produce the correct answer, this output is 
compared with what it should have been if 
the output were an exact match for the input, 
and the difference is used to adjust the weights 
between the nodes. A more complex version 
of this process, called a deep neural network, 
has many hidden layers. It’s this kind of sys-
tem that London-based AI research company 
DeepMind Technologies, which is owned by 
Google’s parent company, Alphabet, used 
to build the computer that beat a profes-
sional human player at the board game Go in 
2015 — a victory widely hailed as a triumph 
for machine intelligence.

An artificial neural network is only a rough 
analogy of how the brain works, says David 
Sussillo, a computational neuroscientist with 
the Google Brain Team in San Francisco, 
California, who collaborated with Pandarinath 
on his work on latent factors. For instance, it 
models synapses as 
numbers in a matrix, 
when in reality they 
are complex pieces of 
biological machinery 
that use both chemi-
cal and electrical 
activity to send or 
terminate signals, 
and that interact with 
their neighbours in dynamic patterns. “You 
couldn’t get further from the truth of what a 
synapse actually is than a single number in a 
matrix,” Sussillo says.

Nonetheless, artificial neural networks have 
proved useful for studying the brain. If such a 
system can produce a pattern of neural activ-
ity that resembles the pattern that is recorded 
from the brain, scientists can examine how 
the system generates its output and then make 
inferences about how the brain does the same 
thing. This approach can be applied to any 
cognitive task of interest to neuroscientists, 
including processing an image. “If you can 
train a neural network to do it,” says Sussillo, 
“then perhaps you can understand how that 
network functions, and then use that to 
understand the biological data.”

DEALING WITH DATA
AI techniques come in handy not just for 
making models and generating ideas, but 
as a tool for handling data. “Neural data are 

terribly complicated, and so often we will be 
using techniques from machine learning sim-
ply in order to look for structure,” Sahani says. 
Machine learning’s main strength lies in rec-
ognizing patterns that might be too subtle or 
too buried in huge data sets for people to spot.
Functional magnetic resonance imaging, 
for example, generates snapshots of activ-
ity throughout the brain at a resolution of 
1–2 millimetres every second or so, poten-
tially for hours. “The challenge of cognitive 
neuroscience is how you find the signal in 
images that are very, very large,” says Nicholas 
Turk-Browne, a cognitive neuroscientist at 
Yale University in New Haven, Connecticut. 
Turk-Browne is leading one of several pro-
jects that are looking for fresh insights at the 
intersection of data science and neuroscience.

Using a machine to analyse these data is 
speeding up the research. “It’s a huge change in 
how neuroscience is done,” Sussillo says. “The 
grad students don’t need to do as much sort 
of mindless work — they can focus on bigger 
questions. You can automate a lot of it, and you 
may get more accurate results.”

REPRODUCING SENSES
Building an artificial system that would 
reproduce brain data was the approach 
taken by Daniel Yamins, a computational 
neuroscientist at the Wu Tsai Neurosciences 
Institute at Stanford University in California. 
In 2014, while Yamins was a postdoctoral 
researcher at the Massachusetts Institute 
of Technology in Cambridge, he and his 
colleagues trained a deep neural network 
to predict the brain activity of a monkey 
when it was recognizing certain objects 
(D. L. K. Yamins et al. Proc. Natl Acad. Sci. 
USA 111, 8619–8624; 2014). Object recogni-
tion in humans and monkeys is performed by 
a brain system called the ventral visual stream, 
which has two main architectural features. 
First, it is retinotopic, which means that the 
visual-processing pathways in the brain are 
organized in a way that reflects how the eye 
takes in visual information. Second, the system 
is hierarchical; specific areas of the cortex per-
form increasingly complex tasks, from a layer 
that identifies only the outlines of objects to 
a higher one that recognizes a whole object, 
such as a car or a face. The details of how the 
higher layers work are poorly understood, but 
the result is that the brain can recognize an 
object in various positions and under differ-
ent lighting conditions, when it seems bigger 
or smaller on the basis of its distance, and even 
when it is partially hidden. Computers are 
often flummoxed by such obstacles.

Yamins and his colleagues constructed their 
deep neural network according to the same reti-
notopic, hierarchical architecture as the brain 
and showed it thousands of images of 64 objects 
that varied in characteristics such as their size 
and position. As the network learnt to recog-
nize the objects, it produced several possible 
patterns of neural activity. The researchers then 

“You couldn’t 
get further from 
the truth of 
what a synapse 
actually is than 
a single number 
in a matrix.”
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compared these computer-generated patterns 
with patterns recorded from the neurons of 
monkeys while they performed a similar task. 
It turned out that the versions of the network 
that were best at recognizing objects were the 
ones with patterns of activity that most closely 
matched those of the monkey brain. “What you 
find is that the structure of the neurons is mim-
icked in the structure of the network,” Yamins 
says. The researchers were able to match areas 
of their network to areas of the brain with about 
70% accuracy.

The results confirmed that the architecture 
of the ventral visual stream is important for 
its processing ability. In 2018, Yamins and 
his colleagues performed a similar feat using 
the auditory cortex, in which they created a 
deep neural network that was able to identify 
words and genres of music from 2-second 
clips with the same accuracy as a human 
(A. J. E. Kell et al. Neuron 98, 630–644; 2018). 
It helped researchers to identify which areas 
of the cortex perform speech recognition and 
which recognize music — a small step towards 
understanding the auditory system.

Neuroscientists are still a long way from 
understanding how the brain goes about a 
task such as distinguishing jazz from rock 
music, but machine learning does give them 
a way of constructing models with which to 
explore such questions. If researchers can 
design systems that perform similarly to the 
brain, Yamins says, their design can inform 
ideas about how the brain solves such tasks. 
That’s important, because scientists often 
don’t have a working hypothesis for how the 
brain operates. Making a machine perform a 
particular task will give them at least one pos-
sible explanation for how the brain achieves 
the same thing.

After researchers have built a hypothesis, the 
next step is to test it. Once again, AI models 

can help, by providing a representation of brain 
activity that can be tweaked to see which fac-
tors might be important in accomplishing 
a specific task. Researchers are limited by 
ethical considerations in terms of how much 
they can intervene in processes in the healthy 
human brain, so many recordings of neural 
activity in people come from the brains of 
those with epilepsy who are due to have brain 
tissue removed. This is because it is permis-
sible to implant electrodes in brain tissue 
that will be excised anyway. Animal models 
enable researchers to use more invasive pro-
cedures, but there are human behaviours, 
notably speech, that cannot be replicated in 
other species. AI systems that can mimic 
human behaviour and be perturbed without 
ethical problems will provide scientists with 
extra tools for exploring how the brain works: 
researchers could teach a network to repro-
duce speech, and then impair that speech to 
observe what happens, for instance.

COMMON CONCERNS
Computer science and cognitive science are 
tackling some big questions, and working out 
how to answer them in either of these fields 
could drive both forwards. One such question 
is exactly how learning occurs. Neural net-
works mostly perform supervised learning. 
To master image recognition, for example, 
they might be shown images from ImageNet, a 
database of more than 14 million photographs 
of objects that have been categorized and 
annotated by people. The networks develop a 
statistical understanding of what images with 
the same label — ‘cat’, for instance — have 
in common. When shown a new image, the 
networks examine it for similar numerical 
attributes; if they find a match, they will declare 
the image to be that of a cat.

That’s obviously not how babies learn, 

says Tomaso Poggio, a computational 
neuroscientist at the Center for Brains, 
Minds and Machines, which is part of the 
Massachusetts Institute of Technology. “A 
baby sees something on the order of a billion 
images in the first two years of life,” he says. 
But few of these images are labelled — only 
a small proportion of objects will be actively 
pointed out and named. “We don’t know how 
to deal with that,” says Poggio. “We don’t know 
how to have machines that learn from mostly 
unlabelled data.”

His laboratory is in the initial stages of a 
project that would enable a neural network 
to perform unsupervised learning, by infer-
ring patterns from unlabelled videos. “We 
know biology can do that,” Poggio says. “The 
question is how.”

Yamins is tackling unsupervised learning 
by devising programs that behave like babies 
at play, who interrogate their environment 
through random interactions and slowly 
develop an understanding of how the world 
works. He essentially codes in curiosity to 
motivate the computer to explore, in the hope 
that new behaviours will emerge.

Another outstanding question is whether 
some aspects of intelligence are ‘installed’ by 
evolution. For instance, people seem to be pre-
disposed to recognizing a face as a face; babies 
can do so from the first hours of life. It might 
be, Poggio suggests, that our genes encode a 
mechanism for learning that task quickly and 
early in development. Deciphering whether 
that idea is correct could enable computer sci-
entists to work out one way to help machines 
to learn. And other researchers are studying 
the neural basis of morality. “People are afraid 
of ‘evil’ machines,” Poggio says. “We’d probably 
better know how our moral behaviour arises 
if we want to build good machines, ethical 
machines.”

Yamins says that it is difficult to see how 
neuroscience alone will be able to uncover 
how unsupervised learning works. “If you 
don’t have an AI solution, if you have noth-
ing that works artificially, you can’t possibly 
have a model of the brain,” he says. It’s more 
probable, he thinks, that computer scientists 
will come up with one or more solutions that 
neuroscientists can then test. “It might turn out 
that they’re wrong,” he says, “but that’s why you 
check them out.”

Answering these riddles could create more 
intelligent machines that are capable of learn-
ing from their environments and that can 
combine the speed and processing power of 
computers with more human abilities. The 
data-crunching and modelling abilities of 
computers are already bringing about advances 
in brain science that researchers say are likely 
to grow. “AI is going to have a huge impact on 
neuroscience,” Sussillo says, “and I want to be 
a part of that.” ■

Neil Savage is a science and technology 
journalist in Lowell, Massachusetts.

Computational neuroscientist Daniel Yamins is developing neural networks that can mimic brain activity.
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CLARIFICATION
The Outlook article ‘Marriage of mind and 
machine’ (Nature 571, S15–S17; 2019) 
omitted one of Chethan Pandarinath’s 
affiliations: he is also at Emory University.
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