
IL
LU

ST
R

AT
IO

N
 B

Y
TH

E
P

R
O

JE
C

T
TW

IN
S

B Y J U L I A N N O W O G R O D Z K I

On 10 April, astrophysicists announced
that they had captured the first ever
image of a black hole. This was exhila-

rating news, but none of the giddy headlines
mentioned that the image would have been
impossible without open-source software. The
image was created using Matplotlib, a Python
library for graphing data, as well as other com-
ponents of the open-source Python ecosystem.
Just five days later, the US National Science

Foundation (NSF) rejected a grant proposal
to support that ecosystem, saying that the
software lacked sufficient impact.

It’s a familiar problem: open-source soft-
ware is widely acknowledged as crucially
important in science, yet it is funded non-
sustainably. Support work is often handled
ad hoc by overworked graduate students and
postdocs, and can lead to burnout. “It’s sort of
the difference between having insurance and
having a GoFundMe when their grandma
goes to the hospital,” says Anne Carpenter, a

computational biologist at the Broad Institute
of Harvard and MIT in Cambridge, Massachu-
setts, whose lab developed the image-analysis
tool CellProfiler. “It’s just not a nice way to live.”

Scientists writing open-source software often
lack formal training in software engineering,
which means that they might never have learnt
best practices for code documentation and
testing. But poorly maintained software can
waste time and effort, and hinder reproduc-
ibility. Biologists who use computational tools
routinely spend “hours and hours” trying to

Releasing lab-built open-source software often involves
a mountain of unforeseen work for the developers.

TIPS FOR OPEN-SOURCE
SOFTWARE SUPPORT

4 J U L Y 2 0 1 9 | V O L 5 7 1 | N A T U R E | 1 3 3

TOOLBOX

get other researchers’ code to run, says Adam
Siepel, a computational biologist at Cold Spring
Harbor Laboratory in New York, and a main-
tainer of PHAST, a tool used for comparative
and evolutionary genomics. “They try to find it
and there’s no website, or the link is broken, or
it no longer compiles, or crashes when they’ve
tried to run it on their data.”

But there are resources that can help, and
models to emulate. If your research group is
planning to release open-source software,
you can prepare for the support work and the
questions that will arise as others begin to use
it. It isn’t easy, but the effort can yield citations
and name recognition for the developers, and
improve efficiency in the field, says Wolfgang
Huber, a computational biologist at the Euro-
pean Molecular Biology Laboratory in Heidel-
berg, Germany. Plus, he adds, “I think it’s fun.”

HAVE A PLAN
For developers of scientific software, release day
isn’t the end of the labour, but often the begin-
ning. Tim Hopper, a data scientist at Cylance in
Raleigh, North Carolina, says on Twitter, “Give
a man a fish and you feed him for a day. Write a
program to fish for him and you maintain it for
a lifetime.” Carpenter hired a full-time software
engineer to handle maintenance for CellProfiler,
which logs about 700 questions and 100 bug
reports or feature requests per year, or about
15 per week. But most open-source software
maintenance is done on a volunteer basis. “I did
this myself, like after midnight,” says Siepel of
his tech-support efforts on PHAST.

To prepare for what’s coming, it helps to
have an idea of what you’re getting into. Some
software will just need short-term support,
whereas other programs might be used for
decades. Nelle Varoquaux says that, in her field
of machine learning in biology, software tools
quickly become obsolete because the size of
the data sets is changing so rapidly. Varoquaux
is a computational biologist at the University
of California, Berkeley, and co-developer of
scikit-learn, a machine-learning package for
Python. “When I started my PhD, everything I
worked on fitted into RAM, and I never had a
memory problem,” she says. But today, memory
is a huge challenge. She estimates that she will
need to maintain two tools she built for analys-
ing DNA and chromosome conformation —
iced and pastis — for only another five years
before they become obsolete.

Obsolescence isn’t bad, she adds: knowing
when to stop supporting software is an impor-
tant skill. “Let a tool die when it has reached
the end of its usefulness or, when a maintainer
wants to quit, orphan it and search for a foster
parent,” Huber advises.

However long your software will be used for,
good software-engineering practices and docu-
mentation are essential, says Andreas Mueller, a
machine-learning scientist at Columbia Univer-
sity in New York City. These include continuous
integration systems (such as TravisCI), version
control (Git) and unit testing. “Continuous

integration tells you, every time you change
your code, if it still works or if you broke it,” as
long as you write the correct tests for it to run,
says Mueller; version control is a system of
recording changes to source code so that you
can revert to any previous version if necessary;
and unit testing tests each individual compo-
nent of the software to ensure that it is sound.
The combination, he says, “will 100% save you
time”. Organizations such as volunteer-run
Software Carpentry and the eScience Institute
at the University of Washington, Seattle, host
bootcamps on software development, and make
tutorials available on GitHub. The Netherlands
eScience Center in Amsterdam provides a
guide to software-development best practices
at https://guide.esciencecenter.nl

To facilitate maintenance, Varoquaux
recommends focusing on code readability
over peak performance. “I always try to make it
readable and well-documented and tested, so if
something breaks I can fix it quickly,” she says.

And that’s inevitable when it comes to soft-
ware: “As soon as you have users, they’re going
to find bugs,” Varoquaux says. Huber recom-
mends fielding user questions through a public
forum, such as Stack Overflow, where users

can tag their ques-
tion with the soft-
ware name. “Do not
respond to private
mails for support
from users,” he says.

Public forums offer three advantages. First,
they reach many more users than do individual
e-mails. “For everybody who writes an e-mail,
there’s probably 100 people who are too shy to
ask,” says Huber. Second, they tend to encourage
more focused and thoughtful questions. Third,
they dissuade users from the time-wasting strat-
egy of e-mailing multiple software maintainers
separately with the same question.

Huber also recommends releasing your
software to a repository such as the Compre-
hensive R Archive Network (CRAN) or Bio-
conductor, an umbrella archive for biological
software written in R, instead of to your per-
sonal home page or GitHub. Such repositories
are curated, and have submission guidelines
for naming conventions and required compo-
nents, much as scientific journals do. And both
CRAN and Bioconductor “offer testing and
continuous integration on several platforms,
and robust, easy-to-use installers”, says Huber.

A MATTER OF FUNDING
Software support requires both time and money.
But funding can be hard to come by. In the
United States, the National Institutes of Health
(NIH) and the NSF focus on new research, and
the maintenance of open-source software often
doesn’t fit well into their requirements. “That’s
really the tragedy of the funding agencies in gen-
eral,” says Carpenter. “They’ll fund 50 different
groups to make 50 different algorithms, but they
won’t pay for one software engineer.”

But some funding does exist from these and

other organizations. One Twitter thread (see
go.nature.com/2yekao5) documents grants
from the NSF’s Division of Biological Infra-
structure, the NIH’s National Human Genome
Research Institute and the National Cancer
Institute, and a joint programme from the
NSF and the UK Biotechnology and Biologi-
cal Sciences Research Council (now part of UK
Research and Innovation). Private US foun-
dations such as the Gordon and Betty Moore
Foundation, the Alfred P. Sloan Foundation
and the Chan Zuckerberg Initiative (CZI) also
fund open-source software support. The CZI
provides support for the Python-based image-
processing software scikit-image, the ImageJ
and Fiji platforms, and also funds the software
engineer on Carpenter’s team.

In the United Kingdom, the Software
Sustainability Institute, based at the University
of Edinburgh, provides free, short, online evalu-
ations of software sustainability, and fellowships
of £3,000 ($US3,800) for researchers based in
Britain or their collaborators. The institute
periodically makes slots available for people to
work with their experts for up to six months to
develop new software or sharpen existing soft-
ware and maintenance practices. In Germany,
Huber recommends the European Commis-
sion’s network grants and the German minis-
try of science’s deNBI initiative, both of which
provide funding for Bioconductor.

The general problem of digital-infrastructure
maintenance is gaining more attention. Varoqu-
aux and her colleagues have received $138,000
from the Alfred P. Sloan and Ford foundations
to study “the visible and invisible work of main-
taining open-source software”, she says, includ-
ing burnout in researchers who devote their
time to this work — part of a portfolio of 13
digital-infrastructure research projects funded
to the tune of $1.3 million. In May, the CZI
announced three requests for proposals to fund
open-source biomedical software, the first of
which opened in June. Siepel has a review article
in the press in Genome Biology on the challenge
of funding open-source software support.

And funding is needed: writing software
that is easy for others to use on a wide range of
data takes much more effort than software that
works only for you. “The difference is at least as
large as between the polished paper published in
Nature and the first stack of slides for a lab meet-
ing with the underlying results,” Huber says.

Still, there’s real value in the exercise. Siepel’s
team sometimes responds to user queries by
pointing out that they’re applying the software
to the wrong data, a subtlety that an evolution-
ary biologist would notice but a software engi-
neer might not. “There’s a sort of idiom: eat
your own dog food,” Huber says: “If you use
your own software for real questions, then you
realize where it’s bad, where it’s lacking. Having
a domain expert write the software tends to
make the software more valuable.” ■

Julian Nowogrodzki is a science writer based
in Boston, Massachusetts.

“As soon as you
have users,
they’re going to
find bugs.”

1 3 4 | N A T U R E | V O L 5 7 1 | 4 J U L Y 2 0 1 9

TOOLBOX

