
O L E X A N D R  I S A Y E V

The total number of materials that can 
potentially be made — sometimes 
referred to as materials space — is vast, 

because there are countless combinations 
of components and structures from which 
mate r  ials can be fabricated. The accumulation 
of experimental data that represent pockets of 
this space has created a foundation for the 
emerging field of materials informatics, which 
integrates high-throughput experiments, com-
putations and data-driven methods into a tight 
feedback loop that enables rational materials 
design. On page 95, Tshitoyan et al.1 report 
that knowledge of materials science ‘hidden’ 
in the text of published papers can be mined 
effectively by computers without any guidance 
from humans. 

The discovery of materials that have a 
particular set of properties has always been 
a serendipitous process requiring extensive 
experimentation — a combination of craft 
and science practised by knowledgeable arti-
sans. However, this trial-and-error approach 
is expensive and inefficient. There is therefore 
great interest in using machine learning to 
make materials discovery more efficient.

Currently, most machine-learning applica-
tions aim to find an empirical function that 
maps input data (for example, parameters 
that define a material’s composition) to a 
known output (such as measured physical or 
electronic properties). The empirical func-
tion can then be used to predict the property 
of interest for new input data. This approach 
is said to be supervised, because the process 
of learning from the training data is akin to 
a teacher supervising students by selecting 
the subjects and facts needed for a particular 

lesson. A contrasting approach involves using 
only input data, which have no obvious con-
nection to a specific output. In this case, the 
goal is to identify intrinsic patterns in the data, 
which are then used to classify those data. Such 
an approach is called unsupervised learning, 
because there are no a priori correct answers 
and there is no teacher.

Tshitoyan and colleagues collected 
3.3 million abstracts from papers published 
in the fields of materials science, physics and 

chemistry between 1922 and 2018. These 
abstracts were processed and curated, for exam-
ple to remove text that wasn’t in English and to 
exclude abstracts that had unsuitable metadata 
types, such as ‘Erratum’ or ‘Memorial’. This left 
1.5 million abstracts, which were written using 
a vocabulary of about 500,000 words. 

The authors then analysed the curated text 
using an unsupervised machine-learning algo-
rithm known as Word2vec (ref. 2), which was 
developed to enable computers to process text 
and natural language. Word2vec takes a large 
body of text and passes it through an artificial 
neural network (a type of machine-learning 
algorithm) to map each word in the vocabulary 
to a numeric vector, each of which typically has 
several hundred dimensions. The resulting 
word vectors are called embeddings, and are 
used to position each word, represented as a 
data point, in a multidimensional space that 
represents the vocabulary. Words that share 
common meanings form clusters within that 
space. Word2vec can therefore make accu-
rate estimates about the meaning of words, 
or about the functional relationships between 
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Figure 1 | Clustering of materials from textual analysis of scientific papers. Tshitoyan et al.1 used 
a machine-learning algorithm to analyse the text in the abstracts of 1.5 million papers to identify 
relationships between words, including the names of materials. Individual materials were then 
represented as data points on graphs, and the algorithm clustered the data points together on the basis of 
the semantic relationships between the words used to describe those compounds. The clusters (coloured) 
correspond to particular types of material, such as superconductors, battery materials and organic 
compounds. The authors show that this approach can be used to identify unreported properties of 
materials mentioned in the scientific literature. (Adapted from Fig. S7a of the paper1.)

This is still far off; but only if we can accurately 
simulate and rationally manipulate a nervous 
system can we begin to truly understand it. 
Once again, Brenner’s tiny worm, occupying 
its unique sweet spot between simplicity and 
complexity, finds itself on the front line of biol-
ogy’s most challenging problems. ■
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Z H I H U A  G A O  &  H A I L A N  H U

Astrocytes are star-shaped cells that 
account for about 40% of cells in the 
mammalian brain. Initially considered 

to be the ‘glue’ that sticks neurons together, 
astrocytes actually have crucial roles in brain 
homeostasis and in regulating the formation, 
maturation, function and elimination of syn-
apses, the connections through which neurons 
communicate with each other1–4. Although 
much progress has been made in elucidating 
the roles of astrocytes1–4, our understand-
ing of how they regulate neural circuits and 
affect behaviours that are associated with 
neurological and psychiatric disorders is just 
emerging5–9. Writing in Cell, Nagai et al.10 pre-
sent evidence in mice that selective activation 
of astrocytes in the striatum, a brain region that 
integrates signals from many parts of the brain 
to coordinate voluntary movement11, drives 
behavioural changes that resemble the symp-
toms of attention-deficit hyper activity disorder 
(ADHD) in humans through a dialogue with 
striatal neurons. 

ADHD is a prevalent psychiatric and neuro-
developmental disorder that affects approxi-
mately 5% of children worldwide, and its 
major symptoms include excessive activity 
(or restlessness) and difficulty in sustain-
ing attention12. Although dysfunction in the 

striatum has been implicated in ADHD13, the 
underlying mechanisms of how the striatum — 
and, in particular, striatal astrocytes — might 
contribute to the disorder, remain elusive. 
The striatum largely consists of a special type 
of medium-sized neuron that is inhibitory 
(that is, it suppresses the activity of connected 
neurons) and that features many tiny protru-
sions called spines that receive synaptic inputs 
from other neurons. When activated, these 
medium spiny neurons (MSNs) release the 
inhibitory neurotransmitter molecule GABA 
(γ-aminobutyric acid) to reduce the activity of 
other neurons, and together the MSNs control 
behavioural movement14. 

Because MSNs are intermingled with  
astrocytes and form close contacts  
with them15, Nagai et al. set out to exam-
ine whether MSN activation might affect 
the activity of surrounding astrocytes. The 
authors monitored astrocyte activity by  
making these cells express a genetically encoded 
calcium indicator — a protein that fluoresces 
in response to increases in the concentration of 
calcium ions (which are involved in cell signal-
ling). They found that, when they stimulated 
MSNs using an electric current, the calcium-
ion signalling in nearby astrocytes increased. 
This increase depended on the release of 
GABA from the MSNs, and on the activation 
of type B GABA receptors (GABAB receptors), 

N E U R O S C I E N C E 

Star-like cells drive 
hyperactivity
A molecular dialogue between neurons and star-shaped cells called astrocytes 
in the striatum of the mouse brain leads to behavioural hyperactivity and 
inattentiveness that are reminiscent of attention-deficit hyperactivity disorder. 

them, on the basis of the patterns of usage of 
the words in the original text. Importantly, 
these meanings and relationships are not 
explicitly encoded by humans, but are learnt 
in an unsupervised way from the analysed text. 

The researchers found that the obtained 
word embeddings for materials-science terms 
produced word associations that reflect rules 
of chemistry, even though the algorithm did 
not use any specific labels to identify or inter-
pret chemical concepts. When combined 
using various mathematical operations, the 
embeddings identified word associations that 
corresponded to concepts such as ‘chemical 
elements’, ‘oxides’, ‘crystal structures’, and so 
on. The embeddings also identified clusters 
of known materials (Fig. 1) corresponding to 
categorizations that could be used to classify 
new materials made in the future.

But Tshitoyan et al. went further than just 
establishing relationships between words  — 
they also demonstrated how their approach 
could be used for prospective materials dis-
covery. They began by training a machine-
learning model to predict the likelihood that 
a material’s name will co-occur with the word 
‘thermoelectric’ in the text (thermoelectric 
materials are those in which a temperature 
difference generates a voltage, or vice versa).  
They then searched the text to find materials 
that had not been reported to have thermo-
electric properties, but whose names have 
a high semantic relationship with the word 
‘thermo electric’ — and that might therefore 
actually be thermoelectric. 

The authors validated this approach by 
training a model using literature published 
before a particular cutoff year, and then check-
ing to see whether it identified materials that 
were reported to be thermoelectric in subse-
quent years. The top 50 materials picked using 
this method were 8 times as likely to have been 
studied as a thermo electric in the 5 years after 
they had been reported than were randomly 
chosen materials. Tshitoyan and colleagues’ 
approach therefore demonstrates yet another 
successful application of text mining, which 
has now been used in fields ranging from 
materials science to protein identification3 and 
cancer biology4.

The combination of unsupervised machine 
learning and text mining for scientific discov-
ery is intriguing, given the burgeoning growth 
of both supervised and unsupervised methods 
for natural-language processing in the past 
few years, and the increasing availability of 
digitized scientific literature that encompasses 
more than 100 years of publications. Of course, 
many challenges remain. Chief among them is 
the fact that unsupervised methods are typi-
cally less accurate than models obtained from 
supervised learning. Moreover, although word 
embedding looks promising as a way of identi-
fying materials that have particular properties, 
it cannot be used to identify materials not 
described in the literature, whose names are 
not part of the existing vocabulary. However, 

such methods could be used to find previously 
unrecognized properties of existing materials, 
which could then be repurposed. 

The field of materials informatics is 
emerging in parallel with the growth of 
mater ials databases, in much the same way as 
chemo informatics arose 20 years ago with the 
establish ment of chemistry databases5. Pro-
gress is fast, because methods based on data 
and litera ture mining are established tools for 
data scientists working in the chemical and 
materials sciences6. Future studies that use 
natural-language processing and unsuper-
vised learning in ways similar to those used by 
Tshitoyan et al., or that use both unsupervised 
and supervised learning, can be expected to 
increase the impact of data science on mater-
ials design and discovery. So, will the next 
big discovery in superconductors, for exam-
ple, be made through conventional human 

intuition or by machine? In all likelihood, it 
will be a smart combination of both human 
and machine intelligence. ■
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