
one that is specific to this particular model.
Regardless of such unknowns, Mauffrey and 

colleagues’ study undoubtedly provides one 
explanation for the origins of newly formed 
nerve cells in prostate tumours in mice. But 
the possibility that some of these nerve cells 
arise spontaneously from other types of cell 
in the tumour or its surroundings cannot be 
ruled out. Nevertheless, the authors’ findings 
warrant further research to illuminate the 
details of the mechanisms responsible. For 
example, how is a breach in the blood–brain 
barrier initiated in a way that is specific to the 
subventricular zone? The answers to this and 
other questions should help to shed light on 
this fascinating topic. ■
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G I U L I A  P A S Q U A L E

The study and replication of human 
sensory abilities, such as visual, auditory 
and tactile (touch-based) perception, 

depend on the availability of suitable data. 
Generally, the larger and richer the data set, 
the more closely models can mimic these func-
tions. Advances in artificial visual and speech 

systems rely on powerful models, known 
as deep-learning models, and have been 
fuelled by the ubiquity of databases of digital 
images and spoken audio (see, for example, 
go.nature.com/2w7nc0q). By contrast, pro-
gress in the development of tactile sensors 
— devices that convert a stimulus of physical 
contact into a measurable signal — has been 
limited, mainly because of the difficulty of 

integrating electronics into flexible materials1. 
On page 698, Sundaram et al.2 report their 
use of a low-cost tactile glove that addresses 
this issue.

The authors’ glove consists of a hand-shaped 
sensing sleeve that is attached to the palm side 
of a knitted glove (Fig. 1). The sleeve contains a 
force-sensitive film on which is sewn a network 
of 64 electrically conducting threads: 32 along 
one direction of the glove and 32 along the per-
pendicular direction. Each of the 548 points 
at which these threads overlap is a pressure 
sensor, because the electrical resistance of the 
interleaved film decreases when these points 
are pressed. The output of the glove can be 
processed as a 32 × 32 array of greyscale pix-
els, in which the colour of each pixel indicates 
the applied pressure from low (black) to high 
(white). These pressure maps are recorded at 
about seven frames per second.

In Sundaram and colleagues’ study, the 
glove was worn to record several videos of 
pressure maps during 3–5-minute sessions 
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A step forward for 
artificial touch systems 
Object manipulation using an innovative glove allows large databases of detailed 
pressure maps to be obtained. Such data could lead to advances in robotic sensing 
and in our understanding of the role of touch in manipulation. See Letter p.698

tumours or mouse neural progenitor cells from 
the subventricular zone, the animals in both of 
these groups showed enhanced tumour growth 
and tumour spread to other parts of the body 
compared with mice that did not receive trans-
plants. Mauffrey and colleagues also found 
that an increased density of neuroblasts seen 
in prostate samples from people with prostate 
cancer correlated with greater aggressiveness 
and swifter recurrence of these individuals’ 
tumours.

The authors’ findings suggest a previously 
unsuspected and intriguing role for brain-
derived neuroblasts in influencing tumour 
development and progression. However, more 

investigation will be needed to address the key 
question of whether this phenomenon has 
clinical relevance for human prostate cancer. 
Furthermore, it remains to be determined 
convincingly that neurogenesis in humans 
normally persists in the subventricular zone 
throughout life, so it might be that the mecha-
nisms that drive neo-neurogenesis in humans 
are different from those observed in the sys-
tems studied by Mauffrey and colleagues. In 
addition, the Hi-myc mouse model might 
not be sufficient to model all types of prostate 
cancer. If that is the case, it would be useful to 
test other mouse models, to determine whether 
these findings reflect a general mechanism or 

Figure 1 | Nerve cells in prostate tumours arise from brain cells. The formation of nerve cells in the 
adult mouse brain occurs in the subventricular zone and the dentate gyrus. Mauffrey et al.8 report that, 
in a mouse model of prostate cancer, there is a breach in the blood–brain barrier near the subventricular 
zone that is caused by unknown factors. Neural progenitor cells from the subventricular zone exit the 
brain through this breach, migrate through blood vessels and specifically invade prostate tumours. 
At the site of the cancer, the neural progenitor cells, which express the protein doublecortin (a marker 
protein that the authors used to track the development of neuronal cell populations), give rise to a type of 
immature nerve cell called a neuroblast, revealing the origins of newly formed nerve cells in the tumour 
microenvironment that are linked to tumour progression1,2,7.
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of single-hand manipulation of 26 everyday 
objects. This procedure resulted in a database 
of detailed pressure maps that, to my knowl-
edge, is one of the largest data sets of this kind. 
The authors found that the glove was flex-
ible, robust and sensitive to small pressure 
changes, despite its fabrication cost of only 
about US$10.

To demonstrate that the glove captures 
different interactions of the hand with each 
object, Sundaram et al. used the recorded data 
to carry out automatic object identification. 
They showed how a state-of-the-art deep-
learning model, which was originally designed 
for large-scale image classification, could learn 
from the gathered pressure maps to re-identify 
the 26 objects during blind manipulation. The 
large number of maps and their spatial reso-
lution proved essential for successful object 
identification.

Next, the authors used the glove to pick 
objects up, and showed that a similar deep-
learning model could estimate the weights of 
unknown objects. The glove was also worn 
during different hand poses, and the signal 
read by the sensors was detailed enough to dis-
tinguish between each pose. Finally, Sundaram 
and colleagues analysed the collaborations 
between different hand regions during object 
grasping by looking at signal correlations.

In addition to providing experimental 
evidence of well-studied principles that under-
lie human grasping, this data-driven explora-
tion could improve our understanding of the 
function of touch during object manipulation. 
Deep-learning models have greatly advanced 
our knowledge of the neural mechanisms that 
underlie visual object recognition3. In this 
respect, a similar approach could be applied 
to the interpretation of tactile-information 
processing in the brain.

Sundaram and colleagues simultaneously 
produced pressure maps and corresponding 
photographs of the hand during object manip-
ulation, generating a large amount of synchro-
nized visual and tactile information. Data sets 
of multiple forms of sensory perception are 
uncommon4, and represent a fundamental 
step towards the development of multisensory 
integration systems and an understanding of 
how the brain develops a coherent perception 
of the environment.

Such a flexible sensing device might have 
various applications — for example, in medi-
cal diagnostics, personal health care and sport. 
But it could also impact on the develop ment 
of active (externally powered) prosthetic 
and robotic hands. Tactile feedback has a 
crucial role in controlling hand movement 
and exerted forces, such that the lack of this 
information makes it challenging for both 
humans and robots to achieve a stable grasp4,5. 
Moreover, the sense of touch directly enables 
tactile exploration aimed at object recognition 
and localization. It is also known that provid-
ing active prostheses with tactile feedback 
could help to alleviate phantom-limb pain 

(the perception of pain from a missing limb), 
increase the sense of ownership over the pros-
thesis and reduce the cognitive stress involved 
in controlling the device, by enabling more 
natural operation6.

Tactile sensors can be incorporated into 
a glove that envelops an artificial limb, or 
directly fixed onto mechanical parts5,7. In 
this respect, the technology of Sundaram and 
colleagues’ device can be adapted to various 
shapes for integration into robotic or pros-
thetic arms. Currently, the main limitations are 
the disadvantages of the required dense sen-
sor coverage of the glove. One disadvantage is 
extensive wiring — although the authors used 
a design of rows and columns to keep such wir-
ing reasonably constrained. Another aspect is 
the rate at which pressure maps are recorded, 
which might need to be higher depending 
on the application (for example, if the tactile 
feedback were used to control a robotic hand). 
Nevertheless, I think that the glove in its pre-
sent form or improved versions of it offer excit-
ing prospects for robotics applications.

An emerging type of machine-learning 
model has proved effective in mimicking the 
human ability to learn to perform actions from 
experience — a process called re inforcement 
learning. In the past few years, researchers have 
used particular gloves to record hand-pose 
data during object manipulation, and have 
fed this recorded experience into a model that 
learns from these data to generate successful 
manipulations8. This approach to transferring 
experience from humans to robots could ben-
efit from the use of Sundaram and colleagues’ 
data-acquisition glove.

Finally, the current study paves the way for 
several computer-vision models to be reused 
for tactile-signal processing, allowing the 
application of decades of computer-vision 
research. This approach offers many ben-
efits, such as the removal of various problems 
involving model selection that slowed progress 
in deep learning in its early stages. Sundaram 
and colleagues’ glove could therefore lead to 
rapid advances in tactile sensing. I am confi-
dent that the low cost of the glove will facilitate 
the replication and sharing of the methodology 
used to fabricate the device and of the data-
acquisition set-up. That would foster the use of 
large and standard data sets in tactile-sensing 
research — currently a major limitation with 
respect to computer vision4. ■
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Figure 1 | A low-cost glove for artificial touch. Sundaram et al.2 describe a glove that consists of a hand-
shaped sensing sleeve (black) attached to a knitted glove (yellow). The sleeve contains a force-sensitive 
film on which a network of electrically conducting threads (silver) is sewn. The points at which these 
threads overlap form pressure sensors. The authors show that pressure maps collected by these sensors 
during object manipulation enable machine-learning models to learn to identify individual objects, 
estimate the weights of objects and distinguish between different hand poses.
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