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G E O F F R E Y  W.  B U R R

Optical fibres transmit data across the 
world in the form of light and are 
the backbone of modern telecom­

munications1. However, when such data need 
to be analysed, they get converted from light 
into electrons and are then processed using 
electronics. There was a time when optics was 
considered as the basis for a potential com­
puting technology2, but it became difficult for 
optical computing to compete with the rapid 
improvements made by its electronic counter­
part. In the past few years, however, concern 
has been growing about the energy costs of 
computation. Therefore, optics is receiving 
attention again, both as a way to decrease 
energy requirements3, and as a special-purpose 
hardware for accelerating artificial-intelligence 
algorithms such as deep neural networks 
(DNNs). On page 208, Feldmann et al.4 report 
an intriguing advance towards all-optical 
implementations of such networks.

A DNN comprises many layers of artificial 
neurons and artificial synapses, which are con­
nections between the neurons. The strengths 
of these connections are called weights and 
can be either positive, indicating neuronal 
excitation, or negative, implying inhibition. A 
DNN learns to perform tasks such as image 
recognition by varying its synaptic weights in 
a way that minimizes the difference between its 
actual output and the desired output.

Central processing units and other digital-
based hardware accelerators5 are typically used 
for DNN computations. A DNN can be trained 
using a known set of data, whereas an already 
trained DNN can be applied to unknown 
data in a task called inference. In either case, 
although the amount of computation is vast, 
the variety of operations is modest, because 
‘multiply–accumulate’ operations dominate 
across the many synaptic weights and neuronal 
excitations.

DNNs are known to still work well when 
computational precision is low5. As a result, 
these networks represent an intriguing 

opportunity for unconventional computing 
techniques. For example, researchers are 
exploring DNN accelerators that are based 
on emerging non-volatile memory devices6,7. 
Such devices retain information even when 
their power source is switched off, and 
can offer improved speed and energy effi­
ciency for DNNs through analog electronic 
computation.

Why not, therefore, also consider optics? 
Structures that direct light — whether they 
be an optical fibre for use in telecommunica­
tions or a waveguide patterned onto a photonic 
chip — can be packed with vast amounts of 
data. Inside such a waveguide, many wave­
lengths of light can propagate together, using 
a technique known as wavelength division 
multiplexing. Each wavelength can then be 
modulated (altered in such a way that it can 
carry information) at a rate that is limited 
by the available bandwidths associated 
with electronic-to-optical modulation and 
optical-to-electronic detection.

Structures called resonators enable indi­
vidual wavelengths to be added to or removed 
from the waveguide, like wagons on a freight 
train. For example, micrometre-scale, ring-
shaped (micro-ring) resonators can implement 
arrays of synaptic weights8. Such resonators 
can be modulated thermally9, electro-opti­
cally10,11 or, as in Feldmann and colleagues’ 
work, through phase-change materials12. These 
materials can switch between an amorphous 
phase and a crystalline phase, which differ 
greatly in their ability to absorb light. Under 
ideal conditions, the resulting multiply–
accumulate operations would require only a 
small amount of power.

Feldmann et al. present an all-optical neural 
network on a millimetre-scale photonic chip, 
in which there are no optical-to-electronic 
conversions within the network. Inputted data 
are electronically modulated onto different 
wavelengths for injection into the network, but 
after that has been performed, all the data stay 
on the chip. Both weight modulation and neu­
ron integration are achieved using integrated 

phase-change materials; these are located on 
two types of micro-ring resonator, which have 
a synaptic or neuronal function.

Unmodulated light that is injected at the 
various operating wavelengths picks up 
the neuronal excitations that have accumu­
lated in the phase-change material, and then 
passes them to the next layer of the network. 
Even without on-chip optical gain (a process 
in which a medium transfers energy to the 
light that is transmitted through it), this set-
up could potentially be scaled up to larger 
networks. The authors demonstrate, on a 
small scale, both supervised and unsupervised 
learning — that is, training is achieved using 
labelled data, which is how DNNs learn, and 
using data without such labels, which is how 
humans tend to learn.

Because the weights are implemented by 
light absorption, negative weights require 
a large bias signal, which must not activate 
the phase-change material. An alternative 
approach13 that can readily offer negative 
weights uses devices called Mach–Zehnder 
interferometers. In these devices, a single 
waveguide is split into two arms and then 
recombined; this causes the amount of trans­
mitted light to depend on the difference in 
optical phase between the two paths. How­
ever, it might be challenging to combine this 
approach with wavelength division multiplex­
ing, because the arms of each interferometer 
would need to introduce the appropriate phase 
difference for each wavelength.

Photonic DNNs still present substantial 
challenges. Their total power usage can be low 
in ideal situations, but thermo-optic power 
is frequently required to adjust and maintain 
the differences in optical phase in the arms of 
each Mach–Zehnder interferometer. More­
over, the total optical power that is injected 
into a system containing phase-change 
materials must be calibrated carefully, so that 
the materials respond to incoming signals 
exactly as intended. Although phase-change 
materials can also be used to adjust Mach–
Zehnder phases, unavoidable cross-coupling 
between how strongly the materials absorb 
light and how much they slow it down poses a 
considerable complication.

Phase-change materials seem to be well 
suited for the non-volatile long-term storage 
of synaptic weights that are based on micro-
ring resonators needing only infrequent 
adjustment. However, when used in the role 
of neuron, the speed of crystallization of 
such materials will limit the maximum rate at 
which neurons can be excited. Furthermore, 
the need to melt the materials to induce a full 
neuronal reset after every potential excitation 
event will rapidly consume the large, but finite, 
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switching endurance of the materials.
Conventional DNNs have grown large and 

now typically involve many thousands of neu­
rons and millions of synapses. But photonic 
networks require waveguides that are spaced 
far from each other to prevent them from cou­
pling, and that avoid sharp bends to prevent 
light from leaving the waveguide. Because 
crossing two waveguides introduces the risk 
of injecting undesired power into the wrong 
path, the 2D nature of a photonic chip presents 
a substantial design constraint.

Despite the long distances and large areas 
that are required for the implementation of 
photonic networks, fabrication of the key 
parts of each optical structure requires preci­
sion. This is because the waveguides and cou­
pling regions — for instance, at the entrance 
and exit of each micro-ring resonator — must 
have the exact dimensions needed to obtain 
their desired performance. There are also 
limits to how small micro-ring resonators can 

be made. Finally, the relatively weak optical 
effects offered by modulation techniques 
require long interaction regions to enable their 
limited impact on passing light to build to a 
noticeable level.

Advances such as those made in Feldmann 
and colleagues’ study and by others8,13 are 
encouraging for the future of the field. The 
development of readily available broadband 
on-chip gain would help considerably, as would 
techniques that can support independent and 
arbitrary operations on each piece of optically 
encoded data, without requiring vast areas of 
the photonic chip. Should scalable photonic 
neural accelerators offering high energy effi­
ciencies eventually emerge, we might well look 
back on the work of Feldmann et al. and others 
in the field as important early glimpses of the 
technology’s promise. ■
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B A R R Y  M .  P O P K I N

Urbanization has been linked to 
increased overweight and obesity 
levels across populations1. However, 

evidence for this association has been based 
mainly on calculations of the body mass index 
(BMI) — the most frequently used tool for 
measuring overweight and obesity — at the 
time of study. The dynamics of BMI change in 
urban and rural areas have not been investi­
gated separately. On page 260, the members of 
the NCD Risk Factor Collaboration2 challenge 
the idea that general BMI trends are mainly a 
result of urbanization. 

The global problem of overweight and 
obesity has been seen chiefly as an urban 
issue, partly because access to food services is 
much greater and easier in cities than in rural 
areas. City dwellers have an array of options 
for purchasing highly processed foods and 
beverages, which are high in salt, saturated 
fat and sugar, and which are often termed 
‘ultra-processed obesogenic foods’. Many low-
income communities in urban areas consume 
predominantly ultra-processed foods and 
beverages sold at fast-food and small retail 
outlets, often because they live in so-called 
‘food deserts’ — low-income areas where these 

are the only available foods. Rural areas, on the 
other hand, have been seen as a different type 
of food desert, where people mainly consume 
produce from their own farms and gardens, 
and have less access to ultra-processed and 
packaged food.

Furthermore, the inhabitants of cities have 
better options for transport, greater access to 
smartphones and cable television, and more 
non-physical leisure opportunities than 
those living in rural areas. They are also more 
likely to have occupations that are not very 
physically demanding. All these factors limit 
energy expenditure. By contrast, rural areas 
have been seen as places where heavy work on 
farms, forestry and mining-related activities 
leads to high levels of energy expenditure. It 
was thought that the levels of physical activity 
in rural areas were much higher than those in 
cities, and hence that the likelihood of weight 
gain was much smaller in rural than in urban 
populations.

Research has shown that in some low-
income countries, such as China, people 
living in urban areas have diets that are dis­
tinctly different from those of their rural 
counterparts3. In the past two decades, a 
shift towards obesogenic diets has promoted 
weight gain and increased the risk of health 

problems related to chronic diseases in urban 
areas in China3.

But some research findings have indicated 
that the levels of overweight and obesity 
are increasing faster in rural than in urban 
areas, even in many low- and middle-income 
countries (LMICs)4. This is likely to be linked 
to the fact that rural areas in LMICs have 
begun to resemble urban areas, because the 
modern food supply is now available5 (Fig. 1) 
in combination with cheap mechanized 
devices for farming and transport. Ultra-
processed foods are becoming part of the diets 
of poor people in these countries, and there 
are reports that infants are even being fed 
with these foods6. Despite these observations, 
most research and policy efforts have been 
focused on tackling urbanization as a major 
driver of obesity, because the general think­
ing is still that people living in rural areas are 
much more likely to face hunger and under­
nutrition than to be exposed to factors that 
lead to excessive weight.

All earlier research on BMI trends was based 
on limited data, and focused on either LMICs 
or high-income countries4. In this context, the 
paper by the NCD Risk Factor Collaboration 
is ground-breaking, because it pulls together 
the latest data from almost all countries to 
comprehensively examine global BMI trends. 
The results show that the levels of overweight 
and obesity are already greater in rural than 
in urban areas in all high-income countries, 
and also suggest that the rate of change in 
many LMICs is such that the levels of over­
weight and obesity in rural areas will soon 
match, if not exceed, those in urban areas. 
Rural hunger, wasting and stunting are rapidly 
being replaced by overweight and obesity in 
most regions of the world except sub-Saharan 
Africa, South Asia and a small number of 
countries in other areas.

This finding is fundamental, because the 

O B E S I T Y

Rural areas drive the 
global weight gain
The global rise in the prevalence of obesity has been seen as an urban problem. A 
large-scale study challenges this view by showing that weight gain in rural areas 
is the main factor currently driving the obesity epidemic. See Letter p.260
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